Stat 441 Fall 2014
Assignment #4

This assignment is due at the beginning of class on Monday, November 10, 2014.

1. Suppose that {B;,t > 0} is a Brownian motion starting at 0. If the process {X;,t > 0} is
defined by setting
X = exp{ B},

use [t0’s formula to compute d X;.

2.  Suppose that the price of a stock {X;,t > 0} follows geometric Brownian motion with drift
0.05 and volatility 0.3 so that it satisfies the stochastic differential equation

dX; = 0.3X;dB; + 0.05X; dt.

If the price of the stock at time 2 is 30, determine the probability that the price of the stock at
time 2.5 is between 30 and 33.

3.  Consider the Ité process {X},t > 0} described by the stochastic differential equation
dX; = 0.10X;dB; + 0.25X, dt.

Calculate the probability that X; is at least 5% higher than X
(a) at time ¢t = 0.01, and

(b) at time ¢t = 1.

4. Consider the Ité process {X},t > 0} described by the stochastic differential equation
dX; =0.06X:dB; + 0.1X,;dt, Xy=35.

Compute P{X; < 48}.

9.  Consider the Ito process {Y;,t > 0} described by the stochastic differential equation
dY; =0.4dB; + 0.1d¢.

If the process {X;,t > 0} is defined by X; = €?°¥*, determine dX;.
6. Suppose that the process {X;,t > 0} is defined by the stochastic differential equation
dXt = O'Xt dBt + ,U/(t)Xt dt

where the volatility o is constant, but the drift p(¢) is a function of time. Determine (an expression
for) X; (assuming sufficient regularity of the function pu).



7. Suppose that g : R — [0,00) is a bounded, piecewise continuous, deterministic function.
Assume further that g € L?([0,00)) so that the Wiener integral

t
I = / g(s) dB,
0

is well defined for all ¢ > 0. Define the continuous-time stochastic process {M;,t > 0} by setting

Mt:ItQ—/Otg2(s)ds: </0tg(s)dBS> —/Otg2(s)ds.

Use It6’s formula to prove that {M;,t > 0} is a continuous-time martingale.
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8.  Suppose that {B;,t > 0} is a standard Brownian motion with By = 0. Consider the process
{Y};,t > 0} defined by setting Y; = BF where k is a positive integer. Use Itd’s formula to show that

Y, satisfies the SDE

k(k—1)

ay; = kv, Y% aB, + v,k ae,

9.  Consider the following time-inhomogeneous Ornstein-Uhlenbeck-type process
dXt = O'(t) dBt — a(Xt — g(t)) de¢

where g and o are (sufficiently regular) deterministic functions of time.

(a) Find an explicit expression for the solution X; of the above SDE (in terms of integrals involving
g and o with respect to By).

(b) Let Y; = exp{X; + ct}. Use It0’s formula to compute dY;.

10. Suppose that {By,t > 0} is a standard Brownian motion with By = 0. Determine an
expression for

¢
/ sin(Bs) dBs
0

that does not involve It6 integrals.

11. Suppose that {B;,t > 0} is a standard Brownian motion with By = 0, and suppose further
that the process {X;,t > 0}, Xo = a > 0, satisfies the stochastic differential equation

1
dX; = X;dB; + — dt.
t t t+Xt

(a) If f(x) = 22, determine df(X;).
(b) If f(t,z) = t?22, determine df(t, X;).



12. We know from Theorem 14.6 that any It0 integral is a martingale. If we combine this
fact with It6’s formula, then we have a method for “generating” martingales. That is, if we can
find functions f for which we can make the dt term in It6’s formula vanish, then we have found a
martingale. For instance, Version I of [t6’s formula tells us that

df(B,) = f/(By)dB, + % #'(By) dt.

Hence, if we can find f(z) such that f”(z) = 0, then f(B;) will be a martingale. Since f”(z) =0
implies that f(z) = ax + b where a, b € R are arbitrary constants, any linear transformation of
Brownian motion is a martingale. That is, {M;,t > 0} where M; = aB; + b is a martingale.

More interesting examples arise when we consider Version II of It6’s formula which tells us that
df(t,By) = f'(t,By) dB; + | f(t, By) + %fﬁ(t?Bt) dt.
Hence, if we can find f(¢,x) such that
flt) + 5 () =0,
then f(t, B;) will be a martingale.
Notice that f(t,z) =22 —t, f(t,r) = 23 — 3tz, and f(t,x) = 2* — 6tx? + 3¢ all work.

(a) Find functions (of the two variables ¢ and x) that contain leading terms x5 and %, respectively,
that generate martingales.

There are, in fact, non-polynomial solutions to this equation such as
f(t,z) = e/?sin(x).

(b) Find some other non-polynomial solutions, including one involving cos(x).

13. Suppose that {B,t > 0} is a standard Brownian motion, and let {F;,¢ > 0} denote
the Brownian filtration. Problem #4 on Assignment #3 asked you to compute E(sin(B;)|Fs) for
0 < s < t and to use this result to find a function of sin(B;) that is a martingale. Suppose that
s < t so that the addition formula for sine implies

sin(By) = sin(By — Bs + Bs) = sin(B; — Bs) cos(Bs) + sin(Bs) cos(B; — Bs).

Thus,
E(sin(By)|Fs) = cos(Bs)E[sin(B; — Bs)] + sin(Bs)E[cos(B; — Bs)]

using the independence of Brownian increments and properties of conditional expectation. Since
By — Bs ~ N(0,t — s), we can write

2

_ 27T(1t_s)/<:exp {—M}sin(m)dx

E[sin(B; — By)]

and

x2

_ \/277(1t7—s)/_z exp {_2@—8)} cos() da.

E[cos(B; — Bs)]



The fact that e~ sin(z) is an odd function implies that E[sin(B; — B,)] = 0. The fact that

—2? . L
e~ ™ cos(x) is an even function implies that

1‘2

_ %é_s) /OOO exp {_Q(t—s)} cos(x) dz.

E[cos(B; — By)]

Hence, we find

2

¢277(2157_3) /OOO exp {—2(;“_3)} cos(z) dz

E(sin(By)|Fs) = [ sin(By). (%)

The previous problem implies that if M; = e/?sin(B;), then {M;,t > 0} is a martingale with
respect to the Brownian filtration. This means that E(M;|Fs) = Mj, or equivalently,

E(e"/? sin(B,)| Fs) = e*/? sin(By)
so that
E(sin(By)|Fs) = e~ =9)/2sin(By). (%)
Equating (x) and (xx) therefore implies that
2

} cos(z)dz = e~ (75)/2,

m(ii—s) /ooo o {‘2<tx— 5)

Using (b) of the previous exercise, mimic this calculation and compute E(cos(B;)|Fs).

The wvalue of this integral can also be found directly using the theory of residues as taught in
Math 312: Complex Analysis.



