Statistics 354 Fall 2018 Midterm — Solutions
1. We showed in class that
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Therefore, fig = BO + leo has a normal distribution since it is a linear combination of the
components of a multivariate normal, and so all that is left is to compute E(fi) and Var(fi).

Since E(jio) = E(Bo + Bﬂo) = E(Bo) + onE(Bl) = Bo + Bixo = po and

Var(jlg) = Vaf(ﬁo + /31200 Var( 0) + ZEO Var(ﬂl) + 29 Cov(ﬁo, B1)
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we conclude
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2. If we define
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then y = X8 + € as required. Since
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so that
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we conclude
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3. (a) We have fi'e = (Hy)'(1 — H)y = y'H'(I — H)y = [0] since H' = H and H> = H.

3. (b) Since y has a multivariate normal distribution, we know that the random vector [p, €]’
has a multivariate normal distribution. The previous result shows that Cov(f;,e;) = 0 for
all 7 and 7 which implies that fi; and e; are independent for all ¢ and j since the components
of a multivariate normal are independent if and only if they are uncorrelated. Thus, p and
e are independent.



