
Statistics 354 Fall 2018 Midterm – Solutions
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Therefore, µ̂0 = β̂0 + β̂1x0 has a normal distribution since it is a linear combination of the
components of a multivariate normal, and so all that is left is to compute E(µ̂0) and Var(µ̂0).
Since E(µ̂0) = E(β̂0 + β̂1x0) = E(β̂0) + x0E(β̂1) = β0 + β1x0 = µ0 and
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3. (a) We have µ̂̂µ̂µ′e = (Hy)′(1−H)y = y′H ′(I −H)y = [0] since H ′ = H and H2 = H.

3. (b) Since y has a multivariate normal distribution, we know that the random vector [µµµ, e]′

has a multivariate normal distribution. The previous result shows that Cov(µ̂i, ej) = 0 for
all i and j which implies that µ̂i and ej are independent for all i and j since the components
of a multivariate normal are independent if and only if they are uncorrelated. Thus, µµµ and
e are independent.
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