
Stat 354 Fall 2018
Solutions to Assignment #3

(4.19) (a) Observe that we can reformulate the linear regression model in matrix notation as

y = Xβ + εεε

where β is a (one-dimensional) parameter,

y =

 y1...
y12

 , X =

 x1...
x12

 and εεε =

 ε1...
ε12

 ,
and εεε satsifies E(εεε) = 0 and V (εεε) = σ2V with

V = diag(x21, . . . , x
2
12) =


x21 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 x212

 .
We compute

X′V −1 =
[
x1 · · · x12

]

x−21 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 x−212

 =
[
x−11 · · · x−112

]

and

X′V −1X =
[
x−11 · · · x−112

]  x1...
x12

 = 12

so that from equations (4.58) and (4.59) we conclude that the generalized least squares estimator
is

β̂GLS = (X′V −1X)−1X′V −1y =
1

12

[
x−11 · · · x−112

]  y1...
y12

 =
1

12

12∑
i=1

yi
xi

and has variance

V (β̂GLS) = σ2(X′V −1X)−1 =
σ2

12
.

(b) From the given data, we obtain

β̂GLS =
1

12

12∑
i=1

yi
xi

=
1

12

12∑
i=1

zi =
30

12

and

V (β̂GLS) =
σ2

12
.



(4.20) (a) Observe that we can reformulate the linear regression model in matrix notation as

y = Xβ + εεε

where β is a (one-dimensional) parameter,

y =

 y1...
y10

 , X =

 x1...
x10

 and εεε =

 ε1...
ε10

 ,
and εεε satsifies E(εεε) = 0 and V (εεε) = σ2V with

V = diag(x1, . . . , x10) =


x1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 x10

 .
We compute

X′V −1 =
[
x1 · · · x10

]

x−11 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 x−110

 =
[
1 · · · 1

]

and

X′V −1X =
[
1 · · · 1

]  x1...
x10

 =
10∑
i=1

xi

so that from equations (4.58) and (4.59) we conclude that the generalized least squares estimator
is

β̂GLS = (X′V −1X)−1X′V −1y =

(
10∑
i=1

xi

)−1 [
1 · · · 1

]  y1...
y10

 =

∑
yi∑
xi

and has variance

V (β̂GLS) = σ2(X′V −1X)−1 =
σ2∑
xi
.

(b) From the given data, we obtain

β̂GLS =

∑
yi∑
xi

=
10 · ȳ
10 · x̄

=
30

15
= 2

and

V (β̂GLS) =
σ2∑
xi

=
σ2

10 · x̄
=

σ2

150
.

(Note that the textbook as an error in the solution.)

(5.4) From equation (5.29), we know

VIFj =
1

1−R2
j



where R2
j is the coefficient of determination from the regression of xj on all other regressors. Hence,

VIF1 =
1

1−R2
1

=
1

1− 0.6
=

1

0.4
=

5

2
= 2.5,

VIF2 =
1

1−R2
2

=
1

1− 0.8
=

1

0.2
=

10

2
= 5,

VIF3 =
1

1−R2
3

=
1

1− 0.9
=

1

0.1
=

10

1
= 10.

(5.5) The correct answer is (e), namely high R2 and mostly insignificant t ratios suggest the pres-
ence of a multicollinearity problem.

(5.14) (a) We know the distribution of the least squares estimator β̂̂β̂β is

β̂̂β̂β ∼ N (βββ, σ2(X′X)−1).

We showed in class that the fact that X is orthogonal implies X′X is diagonal. (And therefore
(X′X)−1 is diagonal as well.) This implies that the components of β̂̂β̂β are uncorrelated, and since
β̂̂β̂β has a multivariate normal distribution, we deduce that its components must be independent.
Hence, β̂1 and β̂j are independent as required.

(b) Form the augmented matrix Z =
[
X z

]
and the augmented parameter γγγ =

[
βββ γ

]′
so that

we can express the expanded model in matrix notation as y = Zγγγ + εεε. The least squares estimate
for the expanded model is γ̂̂γ̂γ = (Z′Z)−1Z′y. Now the form of Z, along with the fact that z is
orthogonal to the columns of X, implies that

Z′Z =
[
X z

]′ [
X z

]
=

[
X′

z′

] [
X z

]
=

[
X′X 0
0 z′z

]
so that

(Z′Z)−1 =

[
(X′X)−1 0

0 (z′z)−1

]
.

Therefore,

γ̂̂γ̂γ = (Z′Z)−1Z′y =

[
(X′X)−1 0

0 (z′z)−1

] [
X′

z′

]
y =

[
(X′X)−1X′ 0

0 (z′z)−1z

]
y

=

[
(X′X)−1X′y

(z′z)−1zy

]
.

In other words, [
β̂̂β̂β
γ̂

]
=

[
(X′X)−1X′y

(z′z)−1zy

]
implying that β̂̂β̂β = (X′X)−1X′y as required.

(c) Write the design matrix X as an augmented matrix X =
[
111 Xc

]
where Xc is an (n×p) matrix

with the property that each column has mean 0. We then compute

X′X =
[
111 Xc

]′ [
111 Xc

]
=

[
111′

X′c

] [
111 Xc

]
=

[
111′111 111′Xc

X′c111
′ X′cXc

]
=

[
n 0
0 X′cXc

]



using the fact that each column of Xc has mean 0. Therefore,

(X′X)−1 =

[
1/n 0
0 (X′cXc)

−1

]
and so

β̂̂β̂β = (X′X)−1X′y =

[
1/n 0
0 (X′cXc)

−1

] [
111′

X′c

]
y =

[ ∑
yi/n

(X′cXc)
−1X′cy

]
implying that

β̂0 =
1

n

∑
yi = ȳ

as required.

(5.16) (a) Since the possible values of z are 0 or 1, the parameter β3 represents the change in the
yield of the chemical reaction (y) due to the second catalyst at a fixed temperature level (x). Note
that if β3 > 0, then this would imply that the yield increases due to the second catalyst, while
β3 < 0 implies that the yield decreases due to the second catalyst.

(b) From the data given, we find β̂2 = 0.41 and SE(β̂2) = 0.11. Therefore, a 95% confidence
interval for β2 is

β̂2 ± t(0.025; 26)SE(β̂2) = 0.41± (2.056)(0.11) = [0.184, 0.636].

Note that the degrees of freedom are df = n− p− 1 = 30− 3− 1 = 26.

(c) (i) Since the vector of errors εεε ∼ N (0, σ2I), we conclude that the vector of least squares
estimates [β̂0, β̂1, β̂2, β̂3]

′ has a multivariate normal distribution. Hence, any uncorrelated com-
ponents are necessarily independent. Thus, since Cov(β̂1, β̂3) = 0, we conclude that β̂1 and β̂3 are
independent.

(c) (ii) When the standard temperature (x = 0) and catalyst 2 (z = 1) are used, the expected
yield is

µ̂ = E(y) = β̂0 + β̂3 = 29.83− 0.32 = 29.51.

Since the residual sum of squares is SSE = 25.05, we conclude that

s2 =
SSE

n− p− 1
=

25.05

26

.
= 0.96.

Thus, a 95% confidence interval for µ̂ is

µ̂± t(0.025; 26)s = 29.51± (2.056)
√

0.96 = [27.495, 31.525].

Note that the degrees of freedom are df = n− p− 1 = 30− 3− 1 = 26.


