Stat 354 Fall 2018
Solutions to Assignment #2

1. We know that g1 ...,y, are iid with y; ~ N(Bo + B1xi,02). Hence, the fact that Bg and Bl
are each linear combinations of y,...,y, (in other words, 5y and [3; are linear combinations of
independent normal random variables), namely
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has a multivariate normal distribution. We showed in class that
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Therefore, the final step is to determine COV(BO, Bl) We begin by observing that
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since Cov(y;,y;) = 0 if i # j and Var(y;) = o2. We now observe that

gciki = gclkz = Zn: (i T —:z)) (a:l —x) _ n;lm g(xi—x)—sf i(mi_x)z __T

— Sxx Szx
=1

so that

COV(éO) Bl) - _Z

rx

Putting everything together implies
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A=10 2 1 and A/A=10 2 1|3 2 2(=18 5 8

1 2 4 1 2 41 (2 1 4 16 8 21
We find

tr(A)=2+2+4=8 and tr(A'A)=17+5+21=143
as well as

det(A)=2-2-440+1-3-1-1-2-2—-0-2-1-2=11
and

det(A’A) =17-5-21+8-8-16+16-8-8—16-5-16 —8-8-17—21-8-8 = 121.
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and so
1/4 0 0 19 19/4
(X'X)"'X'y=|0 1/4 0 1| =1]1/4
0 0 1/4| |5 5/4

Note that both X’X and (X'X)~! are diagonal matrices.
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(3.4) If
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then det(A) = (2)(2) — (—1)(—1) = 3 and
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det(A—A)=(2-X)*—(1)*=(1-N(3-\).

We now find

so that

(The difference of perfect squares is easy to factor.) Thus, there are two eigenvalues, namely
)\1:1 and )\2:3.

The corresponding eigenvectors are found by row reduction. For A\; =1,

1 —1]0 1 -1]0
aonr= |4 =[]

and for Ao = 3,
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Since the eigenvectors corresponding to a given eigenvalue A lie in the nullspace of [A — AI], we
conclude that a basis for the eigenspace corresponding to Aj is
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(3.6) If
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then det(A) = 3 and
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(3.12) Let z = [21, 22, 23] be the random vector with mean vector g and covariance matrix V. If
y = [y1,92,y3]" and
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then z = Ay — [0,0, 7). Hence, the mean vector of y is

0 10 2 1 0 7
E(y)=Ap— |0| = |1 1 —1| [2| = |0| = |0
7 2 1 1 3 7 0
The covariance matrix of y is
1 0 2 3 2 1] |1 1 2 11 6 17
V(y):AVA': 1 1 =112 2 1|0 1 1|=]|6 6 12
2 1 1 11 1] (2 -1 1 17 12 29
Let w = [1,1,1] so that
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(3.15) We begin by noting that
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det(A—MN)=(1-=XN2=p =1 =XA+p)1=X—)p).

so that

(The difference of perfect squares is easy to factor.) Thus, there are two eigenvalues, namely

A=1+4+p and Ao2=1-—p.



The corresponding eigenvectors are found by row reduction. For Ay =1+ p,
B | =pr p |0 1 -11]0
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and for Ao =1 — p,
pl0 0 0|0

Since the eigenvectors corresponding to a given eigenvalue A lie in the nullspace of [A — AI], we
conclude that a basis for the eigenspace corresponding to Aj is
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and a basis for the eigenspace corresponding to Ag is
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