Statistics 351 Fall 2015 Midterm #1 — Solutions

1. (a) We find

so that ¢ = 3/2.
1. (b) By definition,
fx(z) = /2 cxdy =cx(2—1z) = gx(2 — )
provided that 1 <z < 2. ’

1. (c) By definition,
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provided that z <y < 2. Note that Y|X = z is uniformly distribution on [z, 2].

1. (d) Since Y|X =z € Uz, 2|, we know E(Y|X = z) = (2 + z)/2. Equivalently, we find
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2. IfU =X+2Y and V = X, then solving for X and Y gives X =V and Y = (U—-V)/2.
The Jacobian of this transformation is
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We now need to be careful with the limits of integration. Since x > 0 we see that
necessarily v > 0. However, y > 0 implies that (v — v)/2 > 0 so u —v > 0 or,
equivalently, u > v. Therefore, we conclude that for 0 < v < u < oo, we have
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The marginal for U is given by
o0 U .3 —u u —u 47 v=u 4
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provided u > 0. Note that U € I'(5,1).



Using the law of total probability,
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provided 0 <y < 1.

If Y = Fx(X), then the distribution function of Y is

PY <y)=P(Fx(X)<y =P <% + 1 arctan(X) < y) = P(X <tan(m(y — 1/2)))
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The density function of Y is
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provided that 0 <y < 1. Thus, Y is uniformly distributed on [0, 1].



