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Statistics 351 Fall 2009 Midterm #1 — Solutions
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Let Y = eX. For y > 0, the distribution function of Y is
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so that the density function of Y is
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for y > 0. We say that the random wvariable Y has a log-normal distribution with
parameters p and o2,

Let Y =1/X. For y > 0, the distribution function of Y is
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so that the density function of Y is
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for y > 0. We say that the random variable Y has an inverse gamma distribution with
parameters a and 1/b.



IfU=vXY and V = /X/Y, then solving for X and Y gives X = UV andY = U/V.

The Jacobian of this transformation is
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We now need to be careful with the limits of integration. Since x > 1 and y > 1 we
see that necessarily u > 1 and v > 0. However, if x = uv, then > 1 implies v > 1/u.
If y = u/v, then y > 1 implies « > v. Thus, we conclude that 0 < 1/u < v < u and
u > 1, and so for these values of u, v, we have
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The marginal for U is given by
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provided u > 1.

By definition, we have
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Notice that we have written this in such a way that the resulting integral equals 1. (It
is the integral of the density function of a N(y/2,1/2) random variable.) Therefore,
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for —oo < y < oo which verifies, in fact, that Y € N (0, 2).



