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In particular,
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Example. Suppose that the random vector X = (X
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(a) Determine the distribution of X.

(b) Determine the distribution of X
2

given X
1

= x.

(c) Determine the distribution of X
1

�X
2

given X
1

+X
2

= 0.

Solution. (a) It appears that X has the density function of a multivariate normal random
vector. Thus, we must determine the mean vector µµµ, the covariance matrix ⇤⇤⇤, and verify
that the distribution is, in fact, MVN. Clearly µµµ = 0. Furthermore,
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It is easy to invert a 2⇥ 2 matrix, and so we see immediately that
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since det[⇤⇤⇤] = 1.
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Thus, matching the general form of a MVN density function with the function given in this
problem, we conclude that
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(b) The conditional density of X
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(c) Consider Y = (Y
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then by Theorem 5.3.1, we conclude that Y 2 N (Bµµµ,B⇤⇤⇤B0) where
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Since det[Cov(Y)] = 4, we deduce that the density of Y is given by
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We now find
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In other words, the distribution of Y
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