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Lecture #23: The Bivariate Normal Density Function

Reference. §5.5 pages 125–126

Last lecture we derived the density function for the multivariate normal by starting with
independent and identically distributed N (0, 1) random variables, performing a linear trans-
formation, and using the change-of-variables formula from Chapter 1.

Definition III. A random vector X with E(X) = µµµ and Cov(X) = ⇤⇤⇤ where det[⇤⇤⇤] > 0 is
N (µµµ,⇤⇤⇤) if and only if its density function is given by
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> 0, and �1 < ⇢ < 1, then det[⇤⇤⇤] > 0 so that X has a density. Since
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we conclude that
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In the special case that µµµ = 000, �2
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Remark. The density is nicely typed on page 126. At the top of page 126, a general formula
for ⇤⇤⇤�1 is used (and given in equation (1.6) on page 119). We will not require this fact, and
will only be concerned with the bivariate density as derived above.
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Conditional Distributions for the Bivariate Normal

Reference. §5.6 pages 127–130
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In particular, X 2 N (µ
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), and Corr(X, Y ) = ⇢. Suppose further that
det[⇤⇤⇤] > 0 so that X has a density given by Definition III.

Goal. To compute the conditional density function for Y |X = x.
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We also know from (⇤) that the joint density f
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Dividing f
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In other words, we see that
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In particular,
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