Statistics 351 (Fall 2015) November 2, 2015
Prof. Michael Kozdron

Lecture #19: Joint Density of the Order Statistic

Reference. §4.3 pages 109-113

We begin with a Stat 251 result.

Theorem. If Xi,...,X,, are i.i.d. continuous random variables with common density f,
then

n

IxtXn (@1, X)) = Hf(f’ﬂz)

i=1
The joint distribution of the order statistic is closely related.

Theorem. If Xi,...,X,, are i.i.d. continuous random variables with common density f,
then the density function of the order statistic (X, ..., Xm))" s given by

The proof of this theorem requires the multidimensional change-of-variables formula for
many-to-one functions. We did not cover this in Chapter 1, and so we will not cover the
proof.

Note. If we want any marginal, then we just integrate. If j # k, then

fX(]-),X(k) (3/]7 yk)

= / T / fX(l) ..... X(,L)(yly oy Yn) dyr s Ay dypn s dyg—1 dYggr - Ay

Remark. We derived the density of the kth order variable X ;) and the joint density of the
extremes (X(), X(,))" earlier. We could also find them as marginals; see page 111.

Example. Let X7, X5, X3 be i.i.d. U(0, 1) random variables.
(a) Compute the density of (Xn), X(2), X(3))".
(b) Compute the density of (X1, X())".
(c) Compute the density of (X (), X(3))".
Solution. Since X7, X5, X3 have common density f(z) =1, 0 < 2 < 1, we conclude that

Ix1 %0 %5 (X1, T2, x3) =1, 0 < @y, 29,23 < L.
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(a) From the previous theorem we conclude
IX 0 X X (Y1, Y2, 93) =31 =6, 0<y1 <y2 <yz <Ll

(b) We find

] Y3
Ixoyxe (W1, 43) = / IX 00X ) X () (Y15 Y2, y3) Ay = / 6dys = 6(ys — v1)

Y1

provided 0 < y; < y3 < 1.
(c) We find

[e’e} Y2
IX ()X (Y2, y3) = / FX 00X X () (Y15 Y2, y3) Ay = / 6 dy; = 6y»
o 0

provided 0 < yo < y3 < 1.

Note that we could also find fx (y3) by integrating either marginal. That is,

oo Y3
Fxg (ys) = / FX X (W1, ys) dyr = / 6(ys — 1) dyr = 6y3 — 35 = 3y;
—00 0
provided 0 < y3 < 1, and
o0 Y3 )
fX(3> (y3) = / fX(z),X@)(yQa ys) dys = / 6y2 dy = 3y;
oo 0

provided 0 < y3 < 1.
Example. Let X7, X5, X3 be i.i.d. U(0, 1) random variables.

(a) Compute P{X; + X3 < 1}.
(b) Compute P{X ) + X3 < 1}

Solution. (a) By the law of total probability,
1
0
We know that fx,(z) =1 for 0 <z < 1. We also find

1—x
P{X2+X3§1|X3:x}:P{X2§1—x|X3:x}:P{X2§1—x}:/ Fro () dy
0

-z
= / 1dy
0

=1—-z
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since Xy and X3 are independent. Thus, we have

1

1 1 2
1
P{X;+ X3 <1} = P{Xgﬁl—x}dx:/(1—x)dx:<x—$—) 3
0 0 0

2

(b) Notice that we must have X5y < X(3). This means that if X5 > 1/2, then X3 > 1/2,
and so X(z) + X(3) is necessarily greater than 1. Therefore, our intu1t10n is that

1/2
P{X@ + X < 1} :/ P{Xgp =2, v < Xg <1—a}d.
0

Formally, we conclude that

P{X@ + X3 <1} = / / [X oy x) (T,Y dydx—/ / 6x dy dx
0

/ x(1—2x)dx

= (3" - )
1
=7
Example. If X, X5, X3, X, are i.i.d. U(0,1) random variables, determine E(X 4| X(1)).

[en]

Solution. Recall that to determine E(X(4)|X (1)), we must compute E(X | Xq) = y1). We
know from our results of Lecture #16 that

Fx o X W1, ya) = 4(4 = 1) f(y2) f(ya) [F (ya) — F(y)]* ™ = 12(ya — 1)’
if 0 < y; <wy4 < 1. Therefore,

fX(1> X(4) (yla y4) 12<y4 — y1)2 2 _3
Propamnlo) == Gy T gy e

if 0 <y; <1, and so

1

E(X(4)|X(1) = yl) = / y4fX<4)\X(1):y1 (y4) dys = / 3y4(y4 - y1)2(1 - yl)_3 dyy

Y1

1

=3(1— yl)‘s/ s — 291y + yiya dya
Y1

ya=1

/1, 2 1
=3(1—y1)° (Zyii - gylyi’ + 51/?@/5)

3-8y + 6yl —yf
41 —y1)?

Y4=y1
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We conclude that ) .

41— Xw)?

E(X@)|Xq)) =

Suppose that we also wish to compute

(3 —8X(1) +6X7), — X§1)> |

41 = X))?

Using techniques of Stat 251, we know that fX(l)(yl) =4(1—y1)% 0 <y <1, and so
3 —8X) +6X7) — X _/003—8y1+6yf—yj"_f (v)d
A1 = X)) Tl Ay e

'3 — 8y + 6y —yf
= 4(1 —y)d
/0 41 —9yp)? (1 =u) dy,

1
=/ 3~ 8y, + 67—yt dys
0

1

1
= <3y1 — dy; + 247 — gyi’)

1 4
—3-4+2->="_,
TET5 75

0

However, the easy way is to observe that E(E(X)|Xn))) = E(X()). Since Xy € 5(4,1),
we know that E(X(4)) = 4/5. Thus, we conclude as before that

41— X))3 5

Read. Example 2.3 on page 108 does a similar calculation for three i.i.d. Exp(1) random

variables.
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