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Lecture #19: Joint Density of the Order Statistic

Reference. §4.3 pages 109–113

We begin with a Stat 251 result.

Theorem. If X
1

, . . . , X
n

are i.i.d. continuous random variables with common density f ,
then

f
X1,...,Xn(x1

, . . . , x
n

) =
nY

i=1

f(x
i

).

The joint distribution of the order statistic is closely related.

Theorem. If X
1

, . . . , X
n

are i.i.d. continuous random variables with common density f ,
then the density function of the order statistic (X

(1)

, . . . , X
(n)

)0 is given by

f
X(1),...,X(n)

(y
1

, . . . , y
n

) = n!
nY

i=1

f(y
i

), y
1

< y
2

< · · · < y
n

.

The proof of this theorem requires the multidimensional change-of-variables formula for
many-to-one functions. We did not cover this in Chapter 1, and so we will not cover the
proof.

Note. If we want any marginal, then we just integrate. If j 6= k, then

f
X(j),X(k)

(y
j

, y
k

)

=

Z 1

�1
· · ·

Z 1

�1
f
X(1),...,X(n)

(y
1

, . . . , y
n

) dy
1

· · · dy
j�1

dy
j+1

· · · dy
k�1

dy
k+1

· · · dy
n

.

Remark. We derived the density of the kth order variable X
(k)

and the joint density of the
extremes (X

(1)

, X
(n)

)0 earlier. We could also find them as marginals; see page 111.

Example. Let X
1

, X
2

, X
3

be i.i.d. U(0, 1) random variables.

(a) Compute the density of (X
(1)

, X
(2)

, X
(3)

)0.

(b) Compute the density of (X
(1)

, X
(3)

)0.

(c) Compute the density of (X
(2)

, X
(3)

)0.

Solution. Since X
1

, X
2

, X
3

have common density f(x) = 1, 0 < x < 1, we conclude that

f
X1,X2,X3(x1

, x
2

, x
3

) = 1, 0 < x
1

, x
2

, x
3

< 1.
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(a) From the previous theorem we conclude

f
X(1),X(2),X(3)

(y
1

, y
2

, y
3

) = 3! = 6, 0 < y
1

< y
2

< y
3

< 1.

(b) We find

f
X(1),X(3)

(y
1

, y
3

) =

Z 1

�1
f
X(1),X(2),X(3)

(y
1

, y
2

, y
3

) dy
2

=

Z
y3

y1

6 dy
2

= 6(y
3

� y
1

)

provided 0 < y
1

< y
3

< 1.

(c) We find

f
X(2),X(3)

(y
2

, y
3

) =

Z 1

�1
f
X(1),X(2),X(3)

(y
1

, y
2

, y
3

) dy
1

=

Z
y2

0

6 dy
1

= 6y
2

provided 0 < y
2

< y
3

< 1.

Note that we could also find f
X(3)

(y
3

) by integrating either marginal. That is,

f
X(3)

(y
3

) =

Z 1

�1
f
X(1),X(3)

(y
1

, y
3

) dy
1

=

Z
y3

0

6(y
3

� y
1

) dy
1

= 6y2
3

� 3y2
3

= 3y2
3

provided 0 < y
3

< 1, and

f
X(3)

(y
3

) =

Z 1

�1
f
X(2),X(3)

(y
2

, y
3

) dy
2

=

Z
y3

0

6y
2

dy
2

= 3y2
3

provided 0 < y
3

< 1.

Example. Let X
1

, X
2

, X
3

be i.i.d. U(0, 1) random variables.

(a) Compute P{X
2

+X
3

 1}.

(b) Compute P{X
(2)

+X
(3)

 1}.

Solution. (a) By the law of total probability,

P{X
2

+X
3

 1} =

Z
1

0

P{X
2

+X
3

 1|X
3

= x}f
X3(x) dx.

We know that f
X3(x) = 1 for 0 < x < 1. We also find

P{X
2

+X
3

 1|X
3

= x} = P{X
2

 1� x|X
3

= x} = P{X
2

 1� x} =

Z
1�x

0

f
X2(y) dy

=

Z
1�x

0

1 dy

= 1� x
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since X
2

and X
3

are independent. Thus, we have

P{X
2

+X
3

 1} =

Z
1

0

P{X
2

 1� x} dx =

Z
1

0

(1� x) dx =

✓
x�

x2

2

◆ ����
1

0

=
1

2
.

(b) Notice that we must have X
(2)

 X
(3)

. This means that if X
(2)

> 1/2, then X
(3)

� 1/2,
and so X

(2)

+X
(3)

is necessarily greater than 1. Therefore, our intuition is that

P{X
(2)

+X
(3)

 1} =

Z
1/2

0

P{X
(2)

= x, x  X
(3)

 1� x} dx.

Formally, we conclude that

P{X
(2)

+X
(3)

 1} =

Z
1/2

0

Z
1�x

x

f
X(2),X(3)

(x, y) dy dx =

Z
1/2

0

Z
1�x

x

6x dy dx

=

Z
1/2

0

6x(1� 2x) dx

=
�
3x2

� 4x3

� ����
1/2

0

=
1

4
.

Example. If X
1

, X
2

, X
3

, X
4

are i.i.d. U(0, 1) random variables, determine E(X
(4)

|X
(1)

).

Solution. Recall that to determine E(X
(4)

|X
(1)

), we must compute E(X
(4)

|X
(1)

= y
1

). We
know from our results of Lecture #16 that

f
X(1),X(4)

(y
1

, y
4

) = 4(4� 1)f(y
1

)f(y
4

)[F (y
4

)� F (y
1

)]4�2 = 12(y
4

� y
1

)2

if 0 < y
1

< y
4

< 1. Therefore,

f
X(4)|X(1)=y1(y4) =

f
X(1),X(4)

(y
1

, y
4

)

f
X(1)

(y
1

)
=

12(y
4

� y
1

)2

4(1� y
1

)3
= 3(y

4

� y
1

)2(1� y
1

)�3

if 0 < y
1

< 1, and so

E(X
(4)

|X
(1)

= y
1

) =

Z 1

�1
y
4

f
X(4)|X(1)=y1(y4) dy4 =

Z
1

y1

3y
4

(y
4

� y
1

)2(1� y
1

)�3 dy
4

= 3(1� y
1

)�3

Z
1

y1

y3
4

� 2y
1

y2
4

+ y2
1

y
4

dy
4

= 3(1� y
1

)�3

✓
1

4
y4
4

�

2

3
y
1

y3
4

+
1

2
y2
1

y2
4

◆ ����
y4=1

y4=y1

=
3� 8y

1

+ 6y2
1

� y4
1

4(1� y
1

)3
.
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We conclude that

E(X
(4)

|X
(1)

) =
3� 8X

(1)

+ 6X2

(1)

�X4

(1)

4(1�X
(1)

)3
.

Suppose that we also wish to compute

E
 
3� 8X

(1)

+ 6X2

(1)

�X4

(1)

4(1�X
(1)

)3

!
.

Using techniques of Stat 251, we know that f
X(1)

(y
1

) = 4(1� y
1

)3, 0 < y
1

< 1, and so

E
 
3� 8X

(1)

+ 6X2

(1)

�X4

(1)

4(1�X
(1)

)3

!
=

Z 1

�1

3� 8y
1

+ 6y2
1

� y4
1

4(1� y
1

)3
· f

X(1)
(y

1

) dy
1

=

Z
1

0

3� 8y
1

+ 6y2
1

� y4
1

4(1� y
1

)3
· 4(1� y

1

)3 dy
1

=

Z
1

0

3� 8y
1

+ 6y2
1

� y4
1

dy
1

=

✓
3y

1

� 4y2
1

+ 2y3
1

�

1

5
y5
1

◆ ����
1

0

= 3� 4 + 2�
1

5
=

4

5
.

However, the easy way is to observe that E(E(X
(4)

|X
(1)

)) = E(X
(4)

). Since X
(4)

2 �(4, 1),
we know that E(X

(4)

) = 4/5. Thus, we conclude as before that

E
 
3� 8X

(1)

+ 6X2

(1)

�X4

(1)

4(1�X
(1)

)3

!
=

4

5
.

Read. Example 2.3 on page 108 does a similar calculation for three i.i.d. Exp(1) random
variables.
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