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Prof. Michael Kozdron

Lecture #18: Distribution of X;), k =1,2,...,n

Let X(x) denote the kth order variable so that X is the kth smallest among {X7,..., X, }.
Thus, if X is to be less than or equal to y;, it must be the case that at least k of
{X1,..., X, } are less than or equal to y,. That is,

P{Xx) < yr} = P{at least k of {X1,..., X,,} <wyi}

and so

P{Xuw <y}t = ZP{exaetlyj of {X1,...., X} <y}
j=k
Since X1,..., X, are independent and identically distributed, it follows that the event that
{exactly j of {Xi,..., X} < yi} has the same probability as the event that there are exactly
J successes in n trials of an experiment with success probability p = P{X < yx} = F(yx) on
each trial. Thus,

P{exactly j of {X1,..., X} <y} = (?) [F(ye)[1 — F(ye)]" .

In other words,
PUw <) = 3 (0) P - P

is an expression for the distribution function of X ).

There is, however, a useful identity for binomial distributions in terms of beta distributions,

namel
y > (?)pju -p)" = @ [a - tas -

j=k
where k£ € {0,1,...,n}and 0 < p < 1.

Remark. Problem #1 on Assignment #6 outlines the proof of this identity.

ny\ n! B I'(n+1)
k(k) C(k=D!(n—k)! THEIn-k+1)

we see that (%) is equivalent to

n n . n—j _ I‘(n+1) D . .
;(j)p](l_p) _F(k‘)r(n—]{;+1)/oxk (1—a)"*dz.

Thus, if X € Bin(n,p) and Y € 5(k,n — k + 1), then this says that

Since

P(X >k)=P(Y <p), or, equivalently, 1— Fx(k—1)= Fy(p).
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In our case of the distribution of X, we see that

I'(n+1) () k—1 —k
P{Xu <yt = 11— )k g
{ (k)_yk} l(l{:)l(n—k+1)/0 ( )

and so
I'(n+1)

T(k)T(n—k+1)

Fx o (k) = [F (ye)) L= F(ye))™ " f(yn)-

In summary, we have proved the following theorem.

Theorem. If Xi,..., X, are i.i.d. with common distribution function F(x) and common
density function f(x), then the density of X, k=1,...,n, is

I'(n+1)
I'(k)T(n—Fk+1)

Ixg (W) = [F(y)* " 1= Fyo)]™ ™ fyn)

and the distribution function of Xy, k=1,...,n, is

['(n+1) Pl —k
F = 1 —a)" " da.

Exercise. Check that for £ = 1 and k = n, we recover the formule for X(;) and X, that
we had earlier.

Remark. An alternate derivation of this result is given on pages 103105 of [1].

Example. Suppose that X, Xy, X3, X are i.i.d. U(0, 1) random variables so that

0, ite<0, 1, if0o<z<1
i x
Flx)=<z, if0<z<1, and f(z)=< " _ ’
. 0, otherwise.
1, ifz>1,
We find
07 if Y4 S 07
Fxy(a) = [F(ya)]" = qui, #0<wp <1,
17 if Ya > 17
and so

4yi’, if0<yy <1,

d
IxwWa) = ——Fx, (ya) = {

dy, 0, otherwise.

Furthermore, we find

1-(1-0)*=0, ify <0,
Fx, () =1-[1-Fy)]'={1-(1-y)*  if0<y<l,
—(—1) =1, ify>1,
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and so

d

4(1 - yl)ga if 0 < Y1 < 17
fxo (1) = d_yleu)(yl) - {

0, otherwise.
Using our earlier theorem, we find in general that the density of X, k = 1,2,3,4, is given
by

I'(5) i1
D(E)D(5 — k)7*
That is, X € B(k,5 — k). In particular, we note that E(Xq) = k/5.

Ix o (k) = (1—y)* % 0<yp <1

Example. If X, X5, X3, Xy are i.i.d. U(0,1) random variables, determine E(R), the ex-
pected value of the range R = X4 — X(y).

Solution. Using the results of Lecture #17, we know that
fr(r) = 4(4— 1) / F@)fr+ 0)[F(r +v) — F@)*2dv, >0,

However, we need to be careful with our limits in this example. Since Xi, X5, X3, X, are
i.i.d. U(0,1), it is clear that fr(r) = 0 for r < 0 or r > 1. However, in our notation, given
R = r, it must be the case that the allowable values of X(;) = v range from 0 <v <1 —7.
This gives

fr(r) = 12/0 _r[(r +v) — v du = 12r%(1 —7)

for 0 < r < 1. We recognize this as the density of a 3(3,2) random variable, and so

Note that this answer is “obvious” since we expect 4 points uniformly distributed to be
evenly spread out: E(X(yy) = 1/5, E(X(9)) = 2/5, E(X(3)) = 3/5, E(X(4)) = 4/5. Thus,
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