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Lecture #9: The Gamma Function

Suppose that p > 0, and define

�(p) :=

Z 1

0

up�1 e�u du.

We call �(p) the Gamma function and it appears in many of the formulæ of density functions
for continuous random variables such as the Gamma distribution, Beta distribution, Chi-
squared distribution, t distribution, and F distribution.

The first thing that should be checked is that the integral defining �(p) is convergent for
p > 0. For now, we will assume that it is true that the Gamma function is well-defined. This
will allow us to derive some of its important properties and show its utility for statistics.

The Gamma function may be viewed as a generalization of the factorial function as this first
result shows.

Proposition 1. If p > 0, then �(p+ 1) = p�(p).

Proof. This is proved using integration by parts from first-year calculus. Indeed,

�(p+ 1) =

Z 1

0

up+1�1 e�u du =

Z 1

0

up e�u du = �upe�u

����
1

0

+

Z 1

0

pup�1 e�u du = 0 + p�(p).

To do the integration by parts, let w = up, dw = pup�1, dv = e�u, v = �e�u and recall thatR
w dv = wv �

R
v dw.

If p is an integer, then we have the following corollary.

Corollary 2. If n is a positive integer, then �(n) = (n� 1)!.

Proof. Using the previous proposition, we see that

�(n) = (n� 1)�(n� 1) = (n� 1)(n� 2)�(n� 2) = · · · = (n� 1)(n� 2) · · · 2 · �(1).

However,

�(1) =

Z 1

0

u0e�u du =

Z 1

0

e�u du = �e�u

����
1

0

= 1 (1)

and so
�(n) = (n� 1)(n� 2) · · · 2 · 1 = (n� 1)!

as required.

The next proposition shows us how to calculate �(p) for certain fractional values of p.
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Proposition 3. �(1/2) =
p

⇡.

Proof. By definition,

�(1/2) =

Z 1

0

u�1/2e�u du.

Making the substitution u = v2 so that du = 2v dv gives
Z 1

0

u�1/2e�u du =

Z 1

0

v�1e�v

2
2v dv = 2

Z 1

0

e�v

2
dv =

Z 1

�1
e�v

2
dv

where the last equality follows since e�v

2
is an even function. We now recognize this as the

density function of a N (0, 1/2) random variable. That is,

1

�
p

2⇡

Z 1

�1
e�

v2

2�2 dv = 1

and so Z 1

�1
e�

v2

2�2 dv = �
p

2⇡.

Choosing �2 = 1/2 gives Z 1

�1
e�v

2
dv =

p

⇡

and so we conclude that �(1/2) =
p

⇡ as claimed.

This proposition can be combined with Proposition 1 to show, for example, that

�(3/2) = �(1/2 + 1) = 1/2 · �(1/2) =

p

⇡

2

and

�(5/2) = �(3/2 + 1) = 3/2 · �(3/2) =
3
p

⇡

4
.

For students, though, perhaps the most powerful use of the Gamma function is to compute
integrals such as the following.

Example 4. Suppose that Y ⇠ Exp(✓). Use Gamma functions to quickly compute E(Y 2).

Solution. By definition, we have

E(Y 2) =

Z 1

�1
y2f

Y

(y) dy =
1

✓

Z 1

0

y2e�y/✓ dy.

Make the substitution u = y/✓ so that dy = ✓du. This gives

1

✓

Z 1

0

y2e�y/✓ dy =
1

✓

Z 1

0

✓2u2e�u ✓ du = ✓2
Z 1

0

u2e�u du = ✓2 �(3).

By Corollary 2, �(3) = (3� 1)! = 2 and so E(Y 2) = 2 ✓2.
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Example 5. If Y ⇠ Exp(✓), then this method can be applied to compute E(Y k) for any
positive integer k. Indeed,

E(Y k) =
1

✓

Z 1

0

yke�y/✓ dy =
1

✓

Z 1

0

✓kuke�u ✓ du = ✓k �(k + 1) = k! ✓k.

Example 6. If X 2 N (0, 1), determine the distribution of X2.

Solution. Let Y = g(X) = X2 so that

F
Y

(y) = P{Y  y} = P{X2

 y}.

Notice that g(x) = x2 is NOT monotone on �1 < x < 1. Therefore,

P{X2

 y} = P{�

p

y  X 

p

y} =

Z p
y

�p
y

f
X

(x) dx

=

Z
0

�p
y

f
X

(x) dx+

Z p
y

0

f
X

(x) dx

=

Z p
y

0

f
X

(x) dx�

Z �p
y

0

f
X

(x) dx,

and so

f
Y

(y) = F 0
Y

(y) = f
X

(
p

y) ·
1

2
p

y
� f

X

(�
p

y) ·
�1

2
p

y
=

1

2
p

y
[f

X

(
p

y)� f
X

(�
p

y)] .

Since g(x) = x2 is two-to-one we have two terms. In particular,

f
Y

(y) =
1

p

2⇡
e�y/2

·

1

2
p

y
+

1
p

2⇡
e�y/2

·

1

2
p

y
=

1
p

2⇡

1
p

y
e�y/2 =

1

21/2�(1/2)
y1/2�1e�y/2, y > 0,

i.e., Y 2 �(1/2, 2) or Y 2 �2(1).

Remark. We will not cover many-to-one functions beyond this example. Therefore, omit
everything following Example 2.6 on page 23 (including Example 2.7 on page 24).

Theorem 7. For p > 0, the integral

Z 1

0

up�1 e�u du

is absolutely convergent.

Proof. Since we are considering the value of the improper integral
Z 1

0

up�1 e�u du

for all p > 0, there is need to be careful at both endpoints 0 and 1.
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We begin with the easiest case. If p = 1, then

Z 1

0

u0e�u du =

Z 1

0

e�u du = lim
N!1

Z
N

0

e�u du = lim
N!1

(1� e�N) = 1.

For the remaining cases 0 < p < 1 and p > 1 we will consider the integral from 0 to 1 and
the integral from 1 to 1 separately.

If 0 < p < 1, then the integral Z
1

0

up�1 e�u du

is improper. Thus,
Z

1

0

up�1 e�u du = lim
a!0+

Z
1

a

up�1 e�u du  lim
a!0+

Z
1

a

up�1 du = lim
a!0+

1� ap

p
=

1

p

since e�u

 1 for 0  u  1.

Furthermore, if 0 < p < 1, then 0 < up�1

 1 for u � 1 and so

Z 1

1

up�1 e�u du = lim
N!1

Z
N

1

up�1 e�u du  lim
N!1

Z
N

1

e�u du = lim
N!1

(1� e�N) = 1.

Thus, we can conclude that for 0 < p < 1,
Z 1

0

up�1 e�u du =

Z
1

0

up�1 e�u du+

Z 1

1

up�1 e�u du 

1

p
+ 1 < 1.

If p > 1, then up�1

2 [0, 1] and e�u

 1 for 0  u  1. Thus,

Z
1

0

up�1 e�u du 

Z
1

0

up�1 du =
up

p

����
1

0

=
1

p
.

On the other hand, if p > 1, then notice that p � bpc 2 [0, 1) so that 0 < up�bpc�1

 1 for
u � 1. We then have

Z
N

1

up�1 e�u du =

Z
N

1

up�bpc�1ubpc e�u du 

Z
N

1

ubpc e�u du.

Thus, integration by parts bpc times (the so-called reduction formula) gives

Z
N

1

ubpc e�u du

= �e�u

�
ubpc + bpcubpc�1 + bpc · (bpc � 1)ubpc�2 + · · ·+ bpc · (bpc � 1) · · · 2 · u

� ����
N

1

+ bpc · (bpc � 1) · · · 2 · 1 ·

Z
N

1

e�u du

9–4



and so

lim
N!1

Z
N

1

ubpc e�u du = bpc !.

Thus, we can conclude that for p > 1,

Z 1

0

up�1 e�u du =

Z
1

0

up�1 e�u du+

Z 1

1

up�1 e�u du 

1

p
+ bpc ! < 1.

In every case we have up�1 e�u

� 0 and so
Z 1

0

��up�1 e�u

�� du =

Z 1

0

up�1 e�u du < 1.

That is, this integral is absolutely convergent, and so �(p) is well-defined for p > 0.
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