Statistics 351 (Fall 2015) September 28, 2015
Prof. Michael Kozdron

Lecture #9: The Gamma Function

Suppose that p > 0, and define

['(p) ::/ uP~t e du.
0

We call I'(p) the Gamma function and it appears in many of the formule of density functions
for continuous random variables such as the Gamma distribution, Beta distribution, Chi-
squared distribution, ¢ distribution, and F' distribution.

The first thing that should be checked is that the integral defining I'(p) is convergent for
p > 0. For now, we will assume that it is true that the Gamma function is well-defined. This
will allow us to derive some of its important properties and show its utility for statistics.

The Gamma function may be viewed as a generalization of the factorial function as this first
result shows.

Proposition 1. If p > 0, then ['(p+ 1) = p['(p).

Proof. This is proved using integration by parts from first-year calculus. Indeed,

I'lp+1) = / uP e du = / uPe ™ du = —uPe™
0 0

+/ puP e " du =0+ pL(p).
0 0

To do the integration by parts, let w = u?, dw = puP~!, dv = e™*, v = —e~* and recall that
fwdv:wv—fvdw. O

If p is an integer, then we have the following corollary.

Corollary 2. If n is a positive integer, then T'(n) = (n — 1)!.

Proof. Using the previous proposition, we see that
'n)=n—-1)I'n—-1)=Mn-1)n-2)I'n—-2)=---=n—-1)(n—2)---2-T(1).

However,

and so

as required. O

The next proposition shows us how to calculate I'(p) for certain fractional values of p.
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Proposition 3. I'(1/2) = /=.

Proof. By definition,
F(1/2):/ uY2e™ du.
0

Making the substitution u = v? so that du = 2v dv gives

/ u71/267u du = / v—lefuz 2udy = 2/ 671}2 dv = / 671’2 dv
0 0 0 e

where the last equality follows since e~ is an even function. We now recognize this as the

density function of a A'(0,1/2) random variable. That is,
1 2
/ e 22 duv=1
ovV2r J_ s

/ e 2% dv = oV 2T.

and so

Choosing 0% = 1/2 gives

/ e dv = /7

o0

and so we conclude that I'(1/2) = /7 as claimed. O

This proposition can be combined with Proposition 1 to show, for example, that

I(3/2) =D(1/2+1) =1/2-T(1/2) = g

and

I(5/2) = T(3/2+1) = 3/2 - T'(3/2) = %E

For students, though, perhaps the most powerful use of the Gamma function is to compute
integrals such as the following.
Example 4. Suppose that Y ~ Exp(6). Use Gamma functions to quickly compute E(Y?).

Solution. By definition, we have

o 1 o0
E(Y?) =/ v fy (y) dy = 5/ yre V0 dy.
- 0

[e.e]

Make the substitution u = y/6 so that dy = 6du. This gives

1 (o9} 1 o0 o

—/ yPe V0 dy = —/ 0*uPe ™ 0 du = 92/ wle ™ du = 6°T'(3).
0 Jo 0 Jo 0

By Corollary 2, I'(3) = (3 — 1)! = 2 and so E(Y?) = 262
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Example 5. If Y ~ Exp(6), then this method can be applied to compute E(Y*) for any
positive integer k. Indeed,

1 [ 1 [

Example 6. If X € AV/(0,1), determine the distribution of X2.

Solution. Let Y = g(X) = X2 so that
Fy(y) = P{Y <y} = P{X* <y}.

Notice that g(z) = 2% is NOT monotone on —oo < = < oo. Therefore,
) Vi
P <yh =Py <X < yih= [ px@)as
VY
0 vy
= / fx(z)dx +/ fx(z)dx

-/ 7 o) do - / ™ o) de,

and so

W) = Fpw) = fx(Vi) - % (= vE) - % _ %

Since g(x) = z? is two-to-one we have two terms. In particular,

fx(Vy) = fx (=)l

1 _ 1 1
frly) = —=e V%

+ e
V2 2y 2rm
e, Y €l(1/2,2) or Y € x*(1).

1 1 1

PN

1

y/2 —_= —y
91/20(1/2)

y/2 1/2—16—1//2’ y >0,

Remark. We will not cover many-to-one functions beyond this example. Therefore, omit
everything following Example 2.6 on page 23 (including Example 2.7 on page 24).

Theorem 7. For p > 0, the integral

o
/ wP e " du
0

Proof. Since we are considering the value of the improper integral

o0
/ uP e " du
0

for all p > 0, there is need to be careful at both endpoints 0 and oo.

15 absolutely convergent.
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We begin with the easiest case. If p = 1, then

o) [e%s) N
/ wWe ™ du = / e "du = lim e “du= lim (1 — e_N) =1.
0 0

N—o0 0 N—oo

For the remaining cases 0 < p < 1 and p > 1 we will consider the integral from 0 to 1 and
the integral from 1 to oo separately.
1
/ uP e " du
0

wP e % du = lim wP e % du < lim wPHdu = lim = —
0 a—0+ a a—0+ a a—0+ p p

If 0 < p < 1, then the integral

is improper. Thus,

since e * <1 for 0 <u<1.
Furthermore, if 0 < p < 1, then 0 < w?~! <1 for u > 1 and so

00 N N
wPle ™ du = lim wPle ™ du < lim e "du= lim (1—eV)=1.
1 N—oo [y NSoo f N300

Thus, we can conclude that for 0 < p < 1,

o) 1 o]
1
/ wP e du = / uP e du + / wPle™du < =41 < o0.
0 0 1 p

If p>1, then uP~! € [0,1] and e < 1 for 0 < u < 1. Thus,

1 1 uP
/ wP e du < / wPdu = —
0 0 p

On the other hand, if p > 1, then notice that p — [p| € [0,1) so that 0 < u?~P)=1 < 1 for
u > 1. We then have

N N N
/ wP e du = / uP~ Py e e gy < / ul?) e du.
1 1 1

Thus, integration by parts |p| times (the so-called reduction formula) gives

N
/ ull e du
1

= —e " (u + [pJul” =t 4 [p) - () = DuP 24 ) (0] — 1) -2 )

!

o P

o)) =12 [ e
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and so
N

lim ul?l e= du = |p| .

N—oo 1

Thus, we can conclude that for p > 1,

o 1 o
1
/ uP e " du = / uP~t e du +/ wP e du < — + [p]! < oo,
0 0 1 p

In every case we have u?~'e ™ > 0 and so

o0 oo
/ }up’I e’“| du = / wPle ™ du < 0.
0 0

That is, this integral is absolutely convergent, and so I'(p) is well-defined for p > 0.
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