Stat 351 Fall 2015
Chapter 5 Solutions

Problem #2. Let X = (X,Y)" with

xx((6)- (5 1)

and consider the change of variables to polar coordinates (R, ©)’. The inverse of this transformation
is given by
r=rcosf and y=rsind

for 0 < 0 < 27w, r > 0 so that the Jacobian is

or 00
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or 00

Since the density of (X,Y) is
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it now follows from Theorem 1.2.1 that the density of (R, )" is

froe(r,0) = fxy(rcosf,rsind) - |J|
=7rfxy(rcosf, rsinf)
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for 0 < 0 < 27, r > 0. The marginal density for © is therefore given by
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Making the change of variables

fe(0) =
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w= 2 PARET) (1= psin 20) so that 7(1 p.) du =rdr
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provided 0 < 6 < 27.



Problem #4. If the random vector (X,Y’)’ has a multivariate normal distribution, then it follows
from Definition I that both X +Y and X — Y are normal random variables. If var(X) = var(Y’),
then

cov( X +Y, X —-Y) =cov(X,X) — cov(X,Y) 4+ cov(Y, X) + cov(Y,Y) = var(X) — var(Y) = 0.
Theorem 5.7.1 therefore implies that X +Y and X —Y are independent since cov(X+Y, X —Y) = 0.
Problem #11. Note that by Theorem 5.7.1, in order to show X;, X5, and X3 are independent,

it is enough to show that cov(Xy, Xg) = cov(X7, X3) = cov(Xe, X3) = 0. Thus, if X; and Xo + X3
are independent, then cov(X;, Xo + X3) = cov(X1, X2) + cov(Xi, X3) = 0 and so

cov(X1, Xa) = — cov(X1, X3). (1)

If X5 and X7 + X3 are independent, then cov(Xs, X1 + X3) = cov(Xa, X1) + cov(X2, X3) = 0 and
SO

COV(XQ,Xl) = —COV(X2,X3). (2)
Finally, if X3 and X;+ X are independent, then cov(Xs, X1+ X2) = cov(X3, X1)+cov(X3, X2) =0
and so

COV(Xg,Xl) = —COV(Xg,XQ). (3)

Since (1), (2), and (3) must be simultaneously satisfied, the only possibility is that cov(X1, X2) =
cov(X1, X3) = cov(Xa, X3) = 0. Hence, X;, X5, and X3 are independent as required.

Problem #12. Using Theorem 5.3.1, the distribution of Y = (Y1, Y3)' is

ver((4) (5 3)

and so we see that Y1 € N(2,10), Y5 € N(—1,5), and corr(Y7,Ys) = % Thus, by the results in

Section 5.6, the distribution of Y7|Y2 = y is normal with mean 2 + % : %(y —(-1))=y+3and

2
variance 10 <1 — (%) ) = 5. That is,
Y1’Y2 =y c N(y+ 3,5)

Problem #13. Let X = (X1, X2, X3)" where X7, X5, X3 are i.i.d. N(1,1) so that X € N(u,A)
where

1 1 0 0
=1 and A=1[0 1 0
1 0 0 1
Let Y = (U,V) where U = 2X; — X5 + X3 and V = X7 4+ 2X5 + 3X3. If

2 -1 1

p=(1 % 3)

then Y = BX. By Theorem 5.3.1, Y is MVN with mean
1

2 -1 1 2
B"_<1 2 3) } _<6)



and covariance matrix

100 2 1
BAB’:G _21 ;) 01 0|[-1 2 :(S 134>.
001 1 3

We can immediately conclude that U € N(2,6), V € N(6,14), and cov(U,V) = 3 so that

corr(U, V) = \/ézf/ﬁ = %\/ﬁ It follows from Section 5.6 that the distribution of V|U = w is

3 V14 9

Choosing u = 3 therefore implies that

VIU =3 € N (65,12.5).

Problem #15. Using Theorem 5.3.1, the distribution of X = (X7, Xo, X3)' is

0 2 4 -5
XeN([[o], |4 9 -10
0 -5 —10 13

and so we see that X; € N(0,2), X2 € N(0,9), and X3 € N(0,13). Since cov(X;, X3) = —5,
we conclude that X; + X3 € N(0,5). Finally, we compute cov(Xs, X1 + X3) = cov(Xs, X1) +
cov(Xg, X3) =4 — 10 = —6 and so corr(Xy, X1 + X3) = —%. Thus, by the results in Section 5.6,

the distribution of X»|X; + X3 = z is normal with mean 0 — % . %(a: —0) = —% and variance
2
9 <1 - (—%) ) = 2. That is,

X2|X1 +X3=x¢€ N(—%,%) .

Problem #16. Using Theorem 5.3.1, the distribution of Y = (Y7,Y5,Y3)" is

0 2 1 1
Yen([|o], |1 21
0 11 2

By definition,

_ Miyevs(y,0,0)
Fimaos=ol) =08 (0 o)

From Definition III, we know

1 3/2 1 _l§y2
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The joint distribution of (Y, Y3)" is

and so

Thus, we conclude

3/2 _13,2
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which we recognize as the density function of a normal random variable with mean 0 and variance

4/3. That is,

Vi[Ya=Y3=0€ N (0,3).
Problem #25. Using Theorem 5.3.1, the distribution of Y = (Y1, Y3)’ is

ven((2) ()

and so we see that Y7 € N(3,9), Y2 € N(2,6), and corr(Yy, Ys) Y2 Thus, by the results in

w

Section 5.6, the distribution of Y;|Y2 = 0 is normal with mean 3 + % : %(0 —2) =1 and variance

V2 2 _ :
9 <1 — <—\/§> ) = 3. That is,
Yi|lYo=0€ N (1,3).

Problem #39. In order to determine the values of a and b for which E(U — a — bV)? is a
minimum, we must minimize the function g(a,b) = E(U —a —bV)2. If U = X; + X3 + X3 and
V =X1 4+ 2X9 4+ 3X3, then

U—a—szXl+X2—|—X3—a—b(X1+2X2+3X3) = (1—b)X1—|—(1—2b)X2+(1—3b)X3—a.
Notice that E(U —a — bV)? = var(U —a — bV) + [E(U — a — bV)]2. We now compute

var(U —a —bV) =var((1 = b)X1 + (1 —20) Xo + (1 — 3b) X3 — a)
= (1 —b)?var(X1) + (1 — 2b)? var(Xs) + (1 — 3b)% var(X3)
= (1 —=b)%+ (1 —2b)*> + (1 — 3b)?

using the fact that X;, X, X3 are i.i.d. N(1,1). Furthermore,

EU—-a—-bV)=E(1-0)X1+(1—-20)Xo+(1-30)Xs—a)=(1—-0)+(1—-2b)+(1—-3b) —a
=3—-6b—a

which implies that

gla,b) = (1= b)% + (1 — 2b)* 4+ (1 — 3b)*> + [3 — 6b — a]* = 12 — 48b + 50> — 6a + 12ab + a>.



To minimize g, we begin by finding the critical points. That is,

%g(a,b) =—6+12b4+2a=0
implies a + 6b = 3, and
0
%g(a, b) = —48 + 100b + 12a = 0
implies 25b + 3a = 12. Solving the second equation for b yields

25b = 12 — 3a = 12 — 3(3 — 6b) and so b:%

Substituting in gives

18 3
Since
82
and

02 02 02 2 )

we conclude by the second derivative test that a = 3/7, b = 3/7 is indeed the minimum.



