Statistics 351 Fall 2009 Quiz \#2 - Solutions

1. Let X denote the colour of the ball drawn from the first urn, and let Y denote the colour of the ball drawn from the second urn. Let b denote the unknown number of blue balls in the second urn. We find

$$
\begin{aligned}
0.44=P(X=Y) & =P(X=R, Y=R)+P(X=B, Y=B) \\
& =P(X=R) P(Y=R)+P(X=B) P(Y=B) \\
& =\frac{4}{10} \cdot \frac{16}{16+b}+\frac{6}{10} \cdot \frac{b}{16+b} .
\end{aligned}
$$

That is,

$$
6 b+64=4.4(16+b) \quad \text { or, equivalently, } \quad 60 b+64=44(16+b)
$$

so that

$$
b=\frac{44 \cdot 16-64}{16}=4 .
$$

The answer is (A). (Problem \#4)
2. If N_{1}, N_{2} denote the number of claims received in weeks 1 and 2 , respectively, then the probability that exactly seven claims will be received during a given two-week period is given by

$$
\begin{aligned}
P\left(N_{1}+N_{2}=7\right) & =\sum_{j=0}^{7} P\left(N_{1}=j, N_{2}=7-j\right)=\sum_{j=0}^{7} P\left(N_{2}=7-j\right) P\left(N_{1}=j\right) \\
& =\sum_{j=0}^{7} \frac{1}{2^{8-j}} \frac{1}{2^{j+1}}=\sum_{j=0}^{7} \frac{1}{2^{9}}=\frac{8}{2^{9}}=\frac{1}{64} .
\end{aligned}
$$

The answer is (D). (Problem \#16)
3. If we denote the constant of proportionality by k, then

$$
k^{-1}=\int_{0}^{40}(10+x)^{-2} d x=-\left.(10+x)^{-1}\right|_{0} ^{40}=\frac{1}{10}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25} .
$$

Thus, if X denotes the lifetime of the machine part, then

$$
P(X \leq 6)=\int_{0}^{6} \frac{25}{2}(10+x)^{-2} d x=\left.\frac{-25(10+x)^{-1}}{2}\right|_{0} ^{6}=\frac{25}{20}-\frac{25}{32}=\frac{15}{32}=0.46875 .
$$

The answer is (C). (Problem \#34)
4. The conditional probability that V exceeds 40,000 , given that V exceeds 10,000 , is given by

$$
\begin{aligned}
P(V \geq 40000 \mid V \geq 10000) & =P(Y \geq 0.4 \mid Y \geq 0.1)=\frac{P(Y \geq 0.4, Y \geq 0.1)}{P(Y \geq 0.1)}=\frac{P(Y \geq 0.4)}{P(Y \geq 0.1)} \\
& =\frac{\int_{0.4}^{1} k(1-y)^{4} d y}{\int_{0.1}^{1} k(1-y)^{4} d y}=\frac{\int_{0.4}^{1}(1-y)^{4} d y}{\int_{0.1}^{1}(1-y)^{4} d y}=\frac{-\left.\frac{1}{5}(1-y)^{5}\right|_{0.4} ^{1}}{-\left.\frac{1}{5}(1-y)^{5}\right|_{0.1} ^{1}} \\
& =\frac{0^{5}-(0.6)^{5}}{0^{5}-(0.9)^{5}}=\frac{2^{5}}{3^{5}}=\frac{32}{243} \doteq 0.1316872 .
\end{aligned}
$$

The answer is (B). (Problem \#36)
5. Let T denote time of failure (measured in years) so that the density function for T is

$$
f(t)=\frac{1}{10} e^{-t / 10}, \quad t>0
$$

If Y denotes the payment of the company, then

$$
\begin{aligned}
E(Y) & =x P(Y=x)+0.5 x P(Y=0.5 x)=x P(T \leq 1)+0.5 x P(1 \leq T \leq 3) \\
& =x \int_{0}^{1} \frac{1}{10} e^{-t / 10} d t+0.5 x \int_{0}^{1} \frac{1}{10} e^{-t / 10} d t \\
& =-\left.x e^{-t / 10}\right|_{0} ^{1}-\left.0.5 x e^{-t / 10}\right|_{1} ^{3} \\
& =x\left(1-e^{-1 / 10}\right)+0.5 x\left(e^{-1 / 10}-e^{-3 / 10}\right) \\
& =x\left(1-0.5 e^{-1 / 10}-0.5 e^{-3 / 10}\right)
\end{aligned}
$$

If the expected payment the insurance company makes is $E(Y)=1000$, then x satisfies

$$
x=\frac{1000}{\left(1-0.5 e^{-1 / 10}-0.5 e^{-3 / 10}\right)} \doteq 5644.227 .
$$

The answer is (D). (Problem \#47)
6. Notice that $\left(x^{2}-2 x+2\right) / 2$ evaluated at $x=1$ is equal to $1 / 2$. Thus, the distribution function for X has a jump at $x=1$ implying that $P(X=1)=1 / 2$. If we differentiate $F(x)$, then $f(x)=2 x-2$ for $1 \leq x \leq 2$ (noting that $P(1 \leq X \leq 2)=1 / 2)$ so that

$$
E(X)=1 P(X=1)+\frac{1}{2} \int_{1}^{2} x(2 x-2) d x=\frac{1}{2}+\frac{1}{2}\left[\frac{2}{3} x^{3}-x^{2}\right]_{1}^{2}=\frac{1}{2}+\frac{8}{3}-2-\frac{1}{3}+\frac{1}{2}=\frac{4}{3}
$$

and

$$
E\left(X^{2}\right)=1^{2} P(X=1)+\frac{1}{2} \int_{1}^{2} x^{2}(2 x-2) d x=\frac{1}{2}+\frac{1}{2}\left[\frac{1}{2} x^{4}-\frac{2}{3} x^{3}\right]_{1}^{2}=\frac{1}{2}+4-\frac{8}{3}-\frac{1}{4}+\frac{1}{3}=\frac{23}{12}
$$

$3 / 12+48 / 12-28 / 12$ Thus, the variance of X is

$$
\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{23}{12}-\frac{16}{9}=\frac{5}{36} .
$$

The answer is (C). (Problem \#62.)

