Statistics 351 Fall 2009 Quiz \#1 - Solutions

1. Let C be the event that an automobile owner purchases collision coverage and let D be the event that an automobile owner purchases disability coverage. We know that $P(C)=2 P(D)$ by (i), we know that $P(C \cap D)=P(C) \cdot P(D)$ by (ii), and we know that $P(C \cap D)=0.15$ by (iii). We then compute

$$
0.15=P(C \cap D)=P(C) \cdot P(D)=2 P(D) \cdot P(D)=2[P(D)]^{2}
$$

implying that $P(D)=\sqrt{0.15 / 2}$. Thus, the probability that an automobile owner purchases neither collision nor disability coverage is

$$
\begin{aligned}
P\left(C^{c} \cap D^{c}\right) & =P\left(C^{c}\right) P\left(D^{c}\right)=[1-P(D)][1-P(C)]=1-P(C)-P(D)+P(C) P(D) \\
& =1-2 P(D)-P(D)+2[P(D)]^{2}=1-3 \sqrt{0.15 / 2}+0.15 \doteq 0.3284162 .
\end{aligned}
$$

The answer is (B). (Problem \#11)
2. The probability of at least one claim during a particular month, given that there have been at most four claims during that month, is

$$
P(N \geq 1 \mid N \leq 4)=\frac{P(N \geq 1, N \leq 4)}{P(N \leq 4)}=\frac{P(1 \leq N \leq 4)}{P(N \leq 4)}=\frac{\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}}{\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}}=\frac{2}{5} .
$$

The answer is (B). (Problem \#24)
3. The expected value of X is given by

$$
\begin{aligned}
E(X) & =\int_{-2}^{4} x \cdot \frac{|x|}{10} d x=\int_{-2}^{0} x \cdot \frac{|x|}{10} d x+\int_{0}^{4} x \cdot \frac{|x|}{10} d x=\int_{-2}^{0}-\frac{x^{2}}{10} d x+\int_{0}^{4} \frac{x^{2}}{10} d x \\
& =-\left.\frac{x^{3}}{30}\right|_{-2} ^{0}+\left.\frac{x^{3}}{10}\right|_{0} ^{4}=\frac{-8}{30}+\frac{64}{30}=\frac{28}{15} .
\end{aligned}
$$

The answer is (D). (Problem \#45)
4. If Y denotes the payment for hospitalization, then $E(Y)$ is given by

$$
\begin{aligned}
E(Y) & =100 P(Y=100)+200 P(Y=200)+300 P(Y=300)+325 P(Y=325)+350 P(Y=350) \\
& =100 P(X=1)+200 P(X=2)+300 P(X=3)+325 P(X=4)+350 P(X=5) \\
& =100 \cdot \frac{5}{15}+200 \cdot \frac{4}{15}+300 \cdot \frac{3}{15}+325 \cdot \frac{2}{15}+350 \cdot \frac{1}{15} \\
& =\frac{3200}{15} \\
& =213 . \overline{3} .
\end{aligned}
$$

The answer is (D). (Problem \#49)
5. We find

$$
E(X)=\left.\frac{d}{d t} M_{X}(t)\right|_{t=0}=\left.\frac{10000}{(1-2500 t)^{-5}}\right|_{t=0}=10000
$$

and

$$
E\left(X^{2}\right)=\left.\frac{d^{2}}{d t^{2}} M_{X}(t)\right|_{t=0}=\left.\frac{5 \cdot 2500 \cdot 10000}{(1-2500 t)^{-6}}\right|_{t=0}=5 \cdot 2500 \cdot 10000
$$

so that

$$
\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=5 \cdot 2500 \cdot 10000-10000^{2}=10000 \cdot(5 \cdot 2500-10000)=\frac{10000^{2}}{4}
$$

Thus, the standard deviation of X is $10000 / 2=5000$. The answer is (B). (Problem \#57)
6. The $70^{\text {th }}$ percentiles of X, denoted α, satisfies

$$
\int_{200}^{\alpha} \frac{2.5(200)^{2.5}}{x^{3.5}} d x=0.70
$$

while the $30^{\text {th }}$ percentiles of X, denoted β, satisfies

$$
\int_{200}^{\beta} \frac{2.5(200)^{2.5}}{x^{3.5}} d x=0.30
$$

Thus,

$$
0.70=\int_{200}^{\alpha} \frac{2.5(200)^{2.5}}{x^{3.5}} d x=-\left.\frac{(200)^{2.5}}{x^{2.5}}\right|_{200} ^{\alpha}=1-\frac{(200)^{2.5}}{\alpha^{2.5}}
$$

so that

$$
\alpha=\frac{200}{0.30^{1 / 2.5}} \doteq 323.7289
$$

Similarly,

$$
\beta=\frac{200}{0.70^{1 / 2.5}} \doteq 230.6698
$$

Thus, the difference between the $30^{\text {th }}$ and $70^{\text {th }}$ percentiles of X is $\alpha-\beta \doteq 93.0591$. The answer is (B). (Problem \#59)

