Statistics 351 (Fall 2009)
Independence of X and S? in a Normal Sample

The goal of this lecture is to prove that X and S? are independent for a normal sample; our
proof of this theorem will follow Example 5.8.3.

Theorem. Suppose that X1, ..., X, are independent N'(0,1) random variables. If
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denote the sample mean and sample variance, respectively, then X and S? are independent.

Proof. Since Xy, ..., X, are iid. N(0,1), we conclude (using, say moment generating func-
tions) that X € N(0,1/n). Similarly, we can show that
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and so
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as well. We also note that
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and so for j # k it follows that
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using the fact that Cov(X, X) = Var(X) = 1/n. Similarly,
Cov(X, X; — X) = Cov(Xj, X) — Cov(X, X)
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Thus, we see that (X, X; — X,..., X, — X)" € N(0,A) where
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By Theorem 5.7.2, we conclude from the form of A that X and (X; — X,..., X, — X)'
are independent normal random vectors. It now follows from the transformation theorem
(Theorem 1.2.1) that since X and X = (X; — X, ..., X,, — X)' are independent, so too are
X and X'X. Since

X'X=> (X;-X),
i=1
this implies that X and S? are independent. O]

Suppose that Yy, ...,Y, are i.i.d. (11, 02). We can use the previous result to show that
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are also independent. If we define X; = (Y; — u)/o, then X; € N(0,1). Therefore,
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