Statistics 351 (Fall 2009)
Independence of \bar{X} and S^{2} in a Normal Sample
The goal of this lecture is to prove that \bar{X} and S^{2} are independent for a normal sample; our proof of this theorem will follow Example 5.8.3.

Theorem. Suppose that X_{1}, \ldots, X_{n} are independent $\mathcal{N}(0,1)$ random variables. If

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

denote the sample mean and sample variance, respectively, then \bar{X} and S^{2} are independent.
Proof. Since X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{N}(0,1)$, we conclude (using, say moment generating functions) that $\bar{X} \in \mathcal{N}(0,1 / n)$. Similarly, we can show that

$$
\begin{aligned}
\bar{X}-X_{j}=\frac{1}{n}\left(X_{1}+\cdots+X_{j-1}+X_{j+1}+\cdots+X_{n}\right)-\frac{n-1}{n} X_{j} & \in \mathcal{N}\left(0, \frac{n-1}{n^{2}}+\frac{(n-1)^{2}}{n^{2}}\right) \\
& =\mathcal{N}\left(0, \frac{n-1}{n}\right)
\end{aligned}
$$

and so

$$
X_{j}-\bar{X} \in \mathcal{N}\left(0, \frac{n-1}{n}\right)
$$

as well. We also note that

$$
\operatorname{Cov}\left(X_{j}, \bar{X}\right)=\operatorname{Cov}\left(X_{j}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Cov}\left(X_{j}, X_{i}\right)=\frac{1}{n} \operatorname{Cov}\left(X_{j}, X_{j}\right)=\frac{1}{n},
$$

and so for $j \neq k$ it follows that

$$
\begin{aligned}
\operatorname{Cov}\left(X_{j}-\bar{X}, X_{k}-\bar{X}\right) & =\operatorname{Cov}\left(X_{j}, X_{k}\right)-\operatorname{Cov}\left(X_{j}, \bar{X}\right)-\operatorname{Cov}\left(\bar{X}, X_{k}\right)+\operatorname{Cov}(\bar{X}, \bar{X}) \\
& =0-\frac{1}{n}-\frac{1}{n}+\frac{1}{n} \\
& =-\frac{1}{n}
\end{aligned}
$$

using the fact that $\operatorname{Cov}(\bar{X}, \bar{X})=\operatorname{Var}(\bar{X})=1 / n$. Similarly,

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{X}, X_{j}-\bar{X}\right) & =\operatorname{Cov}\left(X_{j}, \bar{X}\right)-\operatorname{Cov}(\bar{X}, \bar{X}) \\
& =\frac{1}{n}-\frac{n}{n^{2}} \\
& =0
\end{aligned}
$$

Thus, we see that $\left(\bar{X}, X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)^{\prime} \in \mathcal{N}(\overline{0}, \boldsymbol{\Lambda})$ where

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccccc}
1 / n & 0 & 0 & \cdots & 0 \\
0 & (n-1) / n & -1 / n & \cdots & -1 / n \\
0 & -1 / n & (n-1) / n & \cdots & -1 / n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -1 / n & -1 / n & \cdots & (n-1) / n
\end{array}\right]
$$

By Theorem 5.7.2, we conclude from the form of $\boldsymbol{\Lambda}$ that \bar{X} and $\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)^{\prime}$ are independent normal random vectors. It now follows from the transformation theorem (Theorem 1.2.1) that since \bar{X} and $\mathbf{X}=\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)^{\prime}$ are independent, so too are \bar{X} and $\mathbf{X}^{\prime} \mathbf{X}$. Since

$$
\mathbf{X}^{\prime} \mathbf{X}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

this implies that \bar{X} and S^{2} are independent.
Suppose that Y_{1}, \ldots, Y_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$. We can use the previous result to show that

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \quad \text { and } \quad S_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

are also independent. If we define $X_{i}=\left(Y_{i}-\mu\right) / \sigma$, then $X_{i} \in \mathcal{N}(0,1)$. Therefore,

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)=\frac{\bar{X}-\mu}{\sigma}
$$

and

$$
S_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}-\frac{\bar{X}-\mu}{\sigma}\right)^{2}=\frac{1}{\sigma^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{S^{2}}{\sigma^{2}}
$$

Thus, since \bar{X} and S^{2} are independent, so too are

$$
\frac{\bar{X}-\mu}{\sigma}=\bar{Y} \quad \text { and } \quad \frac{S^{2}}{\sigma^{2}}=S_{Y}^{2}
$$

