Statistics 351 (Fall 2009) Independence of \overline{X} and S^2 in a Normal Sample

The goal of this lecture is to prove that \overline{X} and S^2 are independent for a normal sample; our proof of this theorem will follow Example 5.8.3.

Theorem. Suppose that X_1, \ldots, X_n are independent $\mathcal{N}(0, 1)$ random variables. If

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

denote the sample mean and sample variance, respectively, then \overline{X} and S^2 are independent.

Proof. Since X_1, \ldots, X_n are i.i.d. $\mathcal{N}(0, 1)$, we conclude (using, say moment generating functions) that $\overline{X} \in \mathcal{N}(0, 1/n)$. Similarly, we can show that

$$\overline{X} - X_j = \frac{1}{n} (X_1 + \dots + X_{j-1} + X_{j+1} + \dots + X_n) - \frac{n-1}{n} X_j \in \mathcal{N} \left(0, \frac{n-1}{n^2} + \frac{(n-1)^2}{n^2} \right)$$
$$= \mathcal{N} \left(0, \frac{n-1}{n} \right)$$

and so

$$X_j - \overline{X} \in \mathcal{N}\left(0, \frac{n-1}{n}\right)$$

as well. We also note that

$$\operatorname{Cov}(X_j, \overline{X}) = \operatorname{Cov}\left(X_j, \frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n} \sum_{i=1}^n \operatorname{Cov}(X_j, X_i) = \frac{1}{n} \operatorname{Cov}(X_j, X_j) = \frac{1}{n},$$

and so for $j \neq k$ it follows that

$$\operatorname{Cov}(X_j - \overline{X}, X_k - \overline{X}) = \operatorname{Cov}(X_j, X_k) - \operatorname{Cov}(X_j, \overline{X}) - \operatorname{Cov}(\overline{X}, X_k) + \operatorname{Cov}(\overline{X}, \overline{X})$$
$$= 0 - \frac{1}{n} - \frac{1}{n} + \frac{1}{n}$$
$$= -\frac{1}{n}$$

using the fact that $\operatorname{Cov}(\overline{X}, \overline{X}) = \operatorname{Var}(\overline{X}) = 1/n$. Similarly,

$$Cov(X, X_j - X) = Cov(X_j, X) - Cov(X, X)$$
$$= \frac{1}{n} - \frac{n}{n^2}$$
$$= 0.$$

Thus, we see that $(\overline{X}, X_1 - \overline{X}, \dots, X_n - \overline{X})' \in \mathcal{N}(\overline{0}, \Lambda)$ where

$$\mathbf{\Lambda} = \begin{bmatrix} 1/n & 0 & 0 & \cdots & 0\\ 0 & (n-1)/n & -1/n & \cdots & -1/n\\ 0 & -1/n & (n-1)/n & \cdots & -1/n\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & -1/n & -1/n & \cdots & (n-1)/n \end{bmatrix}$$

By Theorem 5.7.2, we conclude from the form of $\mathbf{\Lambda}$ that \overline{X} and $(X_1 - \overline{X}, \dots, X_n - \overline{X})'$ are independent normal random vectors. It now follows from the transformation theorem (Theorem 1.2.1) that since \overline{X} and $\mathbf{X} = (X_1 - \overline{X}, \dots, X_n - \overline{X})'$ are independent, so too are \overline{X} and $\mathbf{X}'\mathbf{X}$. Since

$$\mathbf{X}'\mathbf{X} = \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

this implies that \overline{X} and S^2 are independent.

Suppose that Y_1, \ldots, Y_n are i.i.d. $\mathcal{N}(\mu, \sigma^2)$. We can use the previous result to show that

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 and $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$

are also independent. If we define $X_i = (Y_i - \mu)/\sigma$, then $X_i \in \mathcal{N}(0, 1)$. Therefore,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right) = \frac{\overline{X} - \mu}{\sigma}$$

and

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} - \frac{\overline{X} - \mu}{\sigma} \right)^2 = \frac{1}{\sigma^2} \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{S^2}{\sigma^2}.$$

Thus, since \overline{X} and S^2 are independent, so too are

$$\frac{\overline{X} - \mu}{\sigma} = \overline{Y}$$
 and $\frac{S^2}{\sigma^2} = S_Y^2$.