Stat 351 Fall 2009
Chapter 4 Solutions

Problem #3. If 0 <y < 1/2, then

1-y 1—y
ﬁﬂﬁz/ l&m&mwxwzz/‘ 2dz = 2(1 - 2y).
Y Y

On the other hand, if 1/2 <y <1, then
y

Yy
) = [ T2z = [0 2ds =202 - 1),
)

—y
Problem #5. Since E[F(X(,) — F(Xq))] = E[F(X4))] — E[F(X())], we compute each of
E[F(X))] and E[F(Xy))] separately. Therefore, by definition,

BIF (X)) = [ Flun) 0 00)

—00

From Theorem 4.1.2, we know that fx, (yn) = n[F(yn)]" 1 f(yn) so that

/OO F(y”)fx(n) (Yn) dyn = /OO n[F(yn)]" f(yn) dyn.

—0o0 —0o0

Making the substitution u = F(y,) so that du = F'(y,) dy, = f(yn) dy, gives

[t ) aon = [ au =

—0o0

n
n+1

Note that since F' is a distribution, our new limits of integration are F(—oo) = 0 and F'(c0) = 1.
As for E[F(X(1))], using Theorem 4.1.2, we compute

o0

E[F (X))l = /00 F(y1) fx,,(y1) dyr = / F(y)n[l — F(y)]" " f(y1) dy.

—o —o
Making the same substitution as above gives
1

/OO Fy)n[l = F(y)]" ™ f(y) dyr = /o nu(l —u)" !t du = n/ 1-—vp" ldyv=1- 2

— 50 0 n—l—l

Finally, we combine our two results to conclude that
n n n—1
E[F (X)) — F(X = — 11— = :
FXw) = FE) =55 [ n+1] n+1

Problem #6. (a) By Theorem 4.3.1, the joint density of (X1, X(2y, X(3y, X))’ is

fX(l),X(Q),X(3),X(4) (yh Y2,Y3, y4) =24
provided that 0 < y; < y2 < y3 < y4 < 1. Therefore,

Y3 Y2 Y3 Y2
fX(3),X(4)(y3,y4)=/0 ; FX (12X (29, X 3, X () (Y1, Y2, Y3, Y4) Ay dy2=/0 /0 24 dy: dy2

Y3
- / 24y dys
0

= 1243
provided that 0 < y3 < y4 < 1.

(continued)



Observe that we must necessarily have X(3) < 1/2 for otherwise we would necessarily have X3y +
X(4) = 1. We therefore conclude that

1/2 pl-y 1/2 1y
P(Xig) + X < 1) = /0 / P o) (0 2) ddy = /0 / 12 dz dy
Yy Y

1/2
=/ 12y%(1 — 2y) dy
0

1/2

(b) By the law of total probability, we have
1
P(X3+X4<1)= / P(X4 <1—2|X3=2x)fx,(z)dz.
0

Since X3 and X4 are independent U(0,1) random variables, we find P(Xy < 1 —z|X3 = z) =
P(X4<1—2x)=1-—x. Thus, we conclude

P(X3+X4§1):/1(1—J})dx:
0

N

Problem #7. By Theorem 4.3.1, the joint density of (X(1), X(2), X(3))" is

fX(l),X(2>,X(3> (y17 Y2, y3) =6

provided that 0 < y; < y2 < y3 < 1. Therefore,

Y3

Y3
IX )X W1, y3) = , FX (1), X 2y, X 5y (Y15 Y2, y3) dy2 = /y 6dy2 = 6(ys — y1)
1 1

provided that 0 < y; < y3 < 1. (This is also equation (3.10) on page 112.) Observe that we must
necessarily have Xy < 1/2 for otherwise we would necessarily have X ;) + X3y > 1. We therefore
conclude

1/2 pl-z 1/2 pl—z
P(Xay+X@ < 1) :/0 / FX 0y X (5 9) dydxz/o / 6(y — z) dy dz
1/2 y=l—=x
-
0

dz
1/2
:/ 1222 — 122 + 3dz
0

y=z

1/2

0

= (423 — 62° + 3x)
1

=3

Problem #8. By Theorem 4.3.1, the joint density of (X(l),X(Q),X(g),X(4))/ is
fX(l)uX(2)1X(3)1X(4) (Y1, Y2, Y3, y4) = 24

provided that 0 < y1 < y2 <y3 <ys4 < 1.

(continued)



(a) We find

Y2 1 Y2 1
IX 2, X (3 (Y2, 3) = /0 /y FX (1):X (29, X 3, X () (Y1, Y2, Y3, Ya) dya dyr = /0 /y 24 dys dys
3 3

Y2
= / 24(1 — yg) dyl
0

= 24y>(1 — y3)

provided that 0 < y2 < y3 < 1. Observe that we must necessarily have X ) <1 /2 for otherwise we
would necessarily have X o) + X(3) > 1. We therefore conclude

12 pl-z 12 pl-z
P(X@g) + X3 <1)= /0 / IX )X (s (@, y) dy da :/o / 24z(1 — y) dy dz
y=1—x

1/2
= / (24xy — 122y%) dz
0

y=x

1/2
= / 122(1 — 2z) dx
0

x=1/2
= (622 — 8x%)

=0
1
5
(b) We find

1 rys 1 rya
IX )Xo (Y1, 92) = /y /y FX (02X (29, X 3, X () (Y1, Y2, Y3, Ya) dy3 dys = /y /y 24 dysz dya
2 2 2

AN

—/ 24(ys — y2) dya
)

2

ya=1
= (12yf — 24y2y4)
Y4=Yy2
— 121 - )
provided that 0 < y; < y2 < 1, and so
1 ry
P(X( 2) < 3X(1) / / fX<1),X(2) (JJ y) dx dy = /0 //3 12(1 — y)Q dz dy
Yy
1
=/ 8y(1 —y)* dy
0
16 !
[ ]
3 0
2
=3
Problem #9. By Theorem 4.3.1, the joint density of (X(1), X(2), X(3), X(4))" is
fX(l),X(g),X(g),X(4) (y17 Y2,Ys, y4) =24
provided that 0 < y1 < y2 < ys < wys < 1.
(continued)



Therefore,

1 rys
fX<1),X<3)(yl,y3)_// FX (1),X (29, X 3, X () (Y1, Y2, Y3, Ya) dy2 dya

Y3
/ / 24 dyo dya
Y3

=24(y3 —y1)(1 —y3)

provided that 0 < y; < y3 < 1, and

Y2 [ya
IX 0, X0 (Y2, y4) = / IX (1) X (29, X (3, X () (Y15 Y2, Y3, Ya) dyz Ay

Y2
/ / 24 dy3 dy1
Y2

= 24y2(ya — y2)

provided that 0 < yo < y4 < 1.

(a) Let U = X3y — X(1) and V = X(y) so that solving for X(;) and X3 gives
X(l) = V and X(S) = U"‘ V

The Jacobian of this transformation is given by

9y Oy

J— ou Ov :‘O 1‘__1'
Oys oys| |11
ou Ov

The density of (U, V)’ is therefore given by

fU7V<u7U) = fX(1 X (3) (Uau + U) : ‘J’ = 24“’(1 —u-— U)
provided that 0 < v <1 —wv and 0 < v < 1, or equivalently, 0 < v <1 —wu and 0 < u < 1. Thus,
we conclude that the density of U = X(3) — X(q) is

fu(u) = /Ol_u 24u(1 — u — v) dv = (24u(1 — w)v — 12uv?) ., = 12u(1 — u)?

for 0 <u < 1.

(b) Let U = X(4) — X(9) and V = X9 so that solving for X(5) and X4 gives
X(Q) =V and X(4) =U+V.

The Jacobian of this transformation is given by

O Oy2

J— ou Ov :‘O 1‘:_1.
Oys Oya| |11
ou Ov

(continued)



The density of (U, V') is therefore given by
fov(u,v) = FX 2y X ) (v,u+v)-|J| = 24uv
provided that 0 < v <1 —wv and 0 < v < 1, or equivalently, 0 < v <1 —wu and 0 < u < 1. Thus,
we conclude that the density of U = X(4) — X(9) is
1—u v=1—u
fu(u) = / 24uv dv = 24un? = 12u(1 — u)?
0 v=0
for 0 <u < 1.

Problem #10. This is an extremely tricky problem. We begin by noting that by Theorem 4.3.1,
the joint density of (X(1), X(2), X(3))" is fX(l)’X(Q)’X(S)(yl,yg,yg) = 6 provided that 0 < y1 < Y2 <
ys < 1. We also observe that

P(X(l) +X(2) > X(g)) = // Py < X(g) < min{z + y, 1}, X(l) =z, X(z) =y)dzdy

0<:L‘+y<2,}
O<z<y<1

where the upper limit for X 3) follows since X 3 is necessarily less than 1 although X(1)+X o) = z+y
could be greater than 1, and the constraint that 0 < x 4+ y < 2 follows since each of x and y are
between 0 and 1. We now write

Py < X3y <min{z +y,1}, Xq) =z, X(9) = y)dady

O<z+y<2,
O<z<y<l
= // Ply < Xy <z+y, Xg) =, Xy =y)drdy
O<z+y<l1,
O<zr<y<l
+ // P(y<X(3) <1, X(I):x, X(Q) :y)dxdy.
1<z+4y<2,
O<zr<y<l
We now find
1/2 1-z pzty
// Ply<Xp <z+y}, Xy =1z, Xpg=y)drdy = / / / IX ()X 2y X () (2, Y, 2) dz dy dz
0<x+y<1,} 0 v Y
O<zr<y<l
1/2 pl—z pzty
= / / / 6dzdydz
0 T Y
/2 pl-z
= / / 6x dy dx
0 T
1/2
= / 6x(1 — 2x)dx
0
12
= (322 — 42?)
0
_1
=7
Note that you should draw the region {0 < x +y < 1,0 < x < y < 1} to ensure you understand
the limits of integration. (continued)



We also find

1 y

1
I<z4y<2, 1/271-y Jy
O<zr<y<l

1 Y 1
= / 6dzdxdy
1/2 J1-y Jy

1 Y
:/ 6(1 —y)dzdy
1/2 J1—y

1

=/ 6(1—y)(2y — 1)dy
1/2

1

= (9y® — 6y — 4y°)

1/2

=7
Note that you should draw the region {1 < z+y < 2,0 <z <y < 1} to ensure you understand
the limits of integration. Therefore, we finally conclude that

1 1 1

Problem #11. If X, X9, X3 are i.i.d. U(0,1) random variables, then we know from Problem #7
(or equation (3.10) on page 112) that

IX ). X ) (W1, y3) = 6(ys — y1)

provided 0 < y; < y3 < 1. Since X(3) > X(;) we immediately see that P(X3) > aX(;)) = 1 for any
a < 1. Thus, we will now compute P(X(3) > aX(y)) for any a > 1. Observe that if X(;) > 1/a,
then it is not possible for X3y to be larger than a.X (). Thus,

P(X(g) > aX(l)) = P(X(g) > CLX(l), X(l) > 1/a) + P(X(g) > aX(l), X(l) < l/a)
= P(X(g) > aX(l), X(l) < 1/&).

We now observe that

1/a 1/a pl
P(X(3) > aXqy, X1y < 1/a) :/ / fxa). X (@, y) dydz —/0 / 6(y —x)dydx

1/a y=1
/ 3y — 6xy)
0 y=azx

1/a
/ 3(2a — a*)x? — 6x + 3] dx

1/a

dx

[e=]

= [(2a — a®)x® — 322 + 31

0
2a — 1

a2

(a) Thus, if a = 2, then the required probability is 3/4.

(continued)



(b) If we want to find the value of a such that the required probability is 1/2, then we simply solve
2a — 1 1

a? 2

for a. Doing so implies a satisfies a? — 4a + 2 = 0 so that

4+
2\/§:2i\/§

Since a > 1, we conclude that a = 2 + /2.

Problem #15. By definition,
px X _ COV(X(l), X(g))
W \/Var(X(l)) . var(X(g))

Since X1, X9, X3 are i.i.d. Exp(1) random variables, we conclude from Theorem 4.2.1 that
IX 0y X (W1 y3) = 6(e™ —e™ P )e Ve
provided 0 < y1 < y3 < oo. We also conclude from Theorem 4.1.2 that
Fxo(y1) = 3(e™)%e™¥ = 370!
provided that 0 < y; < oo, and that
FXps (y3) = 3(1 — e ¥8)%e748

provided that 0 < y3 < co. Since we recognize X(;) € Exp(1/3) we conclude immediately that
E(X(1y) = 1/3 and var(X(y)) = 1/9. Next we compute

o0 o0 o0 o0
E(X@3) = /0 Bys(1— e ™) ¥ dys = /0 3yse Y3 dys — / 6yse” 2 dyz + / 3yse ¥ dys

0 0
1\2 1\2
_u
6
and
E(X) = / Bys(1 — e ¥)%e ¥ dys = / 3yze ¥ dys — / Gyze " dys + / Byze™ " dys
0 0 0 0
1\? 1\?
—3I(3) -6 (2) I'(3)+3 <3> r'(3)
_ 8
187
Therefore,

85  (11\* 49
(X)) = B(X) ~ B = 35 - (5 ) =36

(continued)



Now we compute

E(X1)X(3)) = / / Fx )X (W1, y3) dys dyn = / / 6yrys(e ¥ — e ¥)e Ve ¥ dysdys
—o0 J —o0 0 Y

1

[e.e] o0
= 6/ yre ¥ / ys(e "t — e )em P dyz dys.
0 Y1

o0 o0 o o0
=6 / yre 2 / yze  # dyzdy; — 6 / yre” ¥t / yze~ 28 dyz dy;
0

Y1 0 Y1

) . B B ) B 1 _2 1 »
B 6/ yre " (e 4 e dyr — 6/ e Guie 4 e ) dyy
0 0

2
[e.9] 9 oo
=3 / yre M dy + / yie " dy,
0 2.Jo

— 31(3) (;)3 +Ir() <§>2

B
18

so that . 1
cov(X ), X(3) = BE(X)X@g) - EX)EX@) =5 -3 5 = 5

Finally, we put everything together to conclude
) COV(X(l), X(g)) 1/9 2
Xy X@) = - : -7
\/V&I“(X(l)) . V&I“(X(3)) 1/3 7/6 7

Problem #16. (a) If X; and X, are independent Exp(a) random variables, then by Theo-
rem 4.2.1, the joint density of (X(y), X(2))" is given by

_ 2 Y1+ 2
qu)vX(z) (Y1, y2) = gexp -z 7

provided that 0 < y; <y2 < co. Suppose that U = X(;) and let V' = X(9) — X(q). Solving for X1
and Xy gives
X(l) =U and X(Q) =U+V.

The Jacobian of this transformation is given by

Oy Oy

J— ou Ov :‘1 O‘:l.
dy2 Oyp| L1
ou v

Therefore, by Theorem 1.2.1, the density of (U, V)’ is given by

2 u+u+v 2 2u +v 2 _ 1 _
fU,V(uaU) — fX(l),X(g) (u,u+v)|J| — ?exp <—> = — €xp <— > = —¢e 2u/a.—€ v/a

a a a a a

provided that v > 0 and u > 0. The marginal density of U is

[o.¢] 00 1
fo(u) = / fuv(u,v)dv = / 2e2wa L—viag, — 22/
e )

a a a

for u > 0.
(continued)



We recognize that this is the density of an exponential random variable with parameter a/2; that
is, U = X(1) € Exp(a/2). The marginal density of V' is

fr(w) = / fow(u,v) du = / 2e-zufe Lemvln gy = Levio
—00 0

a a a

for v > 0. We recognize that this is the density of an exponential random variable with parameter
a; that is, V' = X(9) — X(1) € Exp(a). Since we can express fy,v(u,v) = fu(u) - fy(v) we conclude
that U and V' are independent; in other words, X(;) and X(9) — X(1) are independent.

(b) To compute E(X )| X (1) = y), we can use properties of conditional expectation (Theorem 2.2.2):

E(X )| Xq) =y) = BE(X@) — Xu) + X0)| X1y =v)
(X2 — Xl Xy =y) + E(Xy| X1y = 9)
(X — X)) +y

:a—|—y

E
E

where the first expression after the third equality follows since X5y — X1 is independent of X1
and the second expression follows since X(q) is “known” when conditioned on the value Xy = y.

As for E(X(1)|X(2) = x), we need to compute this by definition of conditional expectation. That
is,

. fX(D,X(Q) (y17 .’1}') i ;22673/1/(1 . eim/a 1 e_yl/a

fX(1)|X(2):w(yl) - fX(Q) (7) %(1 _ efx/a) ce—wla al—e7/a

provided 0 < y; < x. This then gives

E(Xm|X _w)_/oof (y1)dy; = xﬂﬂd _1/x e~v1/a g
MA@ =+ = . X1y X2y=2\Y1) dY1 = y a1—eala yl_a(l—e_m/a) ; Y1 Y.

Integrating by parts gives
x
/ yre ey = a® — a®e %/ — ape /.
0

Therefore,
a? — a?e /% — qre~

a(l — e~/a)

z/a —z/a

xe B
1—e%/a - er/a —1°

x

E(X(l)‘X(Q) Z.QJ) = =a

Problem #17. Let X;, X9, and X3 are independent, identically distributed U(0,1) random
variables. Notice that if z > 1/2, then since X(3) > X(1) we conclude

On the other hand, suppose that 0 < z < 1/2. As in Problem #7 (or by equation (3.10) on
page 112),
fX(l),X(g) (yl: 93) = 6(y3 - 3/1)
provided 0 < y; < y3 < 1.
(continued)



Therefore, we find

1
/ fX<1),X(3) (,y3) dys
1/2

fX(1) (2)

P(Xg) > 5| Xy =2) =

For the numerator we calculate
1 1

9 3
1 3z 4(3 x)

1
IX 0y X (T y3) dys = /1 P 6(ys — x) dys = (3y3 — 6xy3)

1/2 1/2

As for the denominator, by Theorem 4.1.2, we find
fxg, (@) = 3(1 — x)?
provided 0 < z < 1. Putting these pieces together, we conclude

3(3 — 4x) 3 —dx
P(X(3)>%|X(1):ZL‘): 4 ( )

3(1—x)2  4(1 —x)%

That is,
Bt0) 0 <a<1/2
P(Xim > 1| X = 2) = 40-2)%" Sz < )
(X@) > 5 Xq) =2) {L .
Problem #19. Since Xy,..., Xy, V1,..., Y, are i.i.d. U(0,a) random variables, we can immedi-

ately conclude that X(,) and Y(,) are independent and identically distributed. Furthermore, we
can use Theorems 4.1.1 and 4.1.2 to determine their common distribution and density functions.
That is, X(,) and Y{,) have common distribution function

0, x<0,
F(x) = %Z, 0<z<a,
1, z>1,
and common density function
n
fz)= —2"1 O0<z<a.

an
If we now let S = min{X(,), Y, } and T = max{X,), Y{,}, then Theorem 4.2.1 implies that the
joint density of (S, T is
For( t)—2-13’hlwﬁ¢”4——%fr”4ﬁ‘1 O<s<t<
S,T\S,t) = CLnS an = a2n3 > S a.
The next step is to let U = % and V = S so that S =V and T'= UV. We find the Jacobian of
this transformation is

Js 0Os
S |0u ov| _Jo 1 _
ot ot vou
du v
The density of (U, V)’ is therefore given by
2 2
fov(u,v) = for(v,uwv) - |J| = Z%v"_l(uv)”_l S z%u"_lv%_l

provided that 1 <u < o0, 0 <v < & <a.
(continued)
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The marginal density for U is therefore given by

v=a/u 2n

nop-19 _  _(n+1)
2 o U
a=" U

00 202 B a/u 3 n B
Ju(u) —/ fov(u,v)dv = aﬁu" 1/0 v ldy = aﬁu” Ly2n
—0o0

v=0
provided that 1 < u < oco. Since we are interested in

ma’X{X(n)a }/(n)}
min{X(n)7 Yv(n)}

Zn:nlog( >:nlogU

we can now use techniques from Chapter 1 to find the density of Z,. Let Z = Z, = nlogU.
Therefore, Fz(z) = P(Z < z) = P(U < ¢*/™) and so

fZ(Z) _ lez/nfU(ez/n) _ lez/n . n(ez/n)f(nJrl) — e 7
n n
provided that 0 < z < co. Hence we conclude that Z, € Exp(1).

Problem #20. (a) If Y1 = Xq) and Yy = X4y — X(x—1), k¥ = 2,...,n, then solving for
X1y X@2)y -+ X(n) gives
Xoy=Y and Xy =Yi+ - +Y, k=2,...,n

The Jacobian of this transformation is given by

dr1 On 0z 1 000 00
dy1 Oys  Oya| |1 1 0 0 0 0
833‘2 8.7)2 6$2 1 110 0 0

J = 373/1 37242 Tyn -1 111 -+ 0 0f=1.
O0x,, Oz, o0z, 1111 --- 1
oy Oy, By, 1111 - 101

(Since the matrix is lower triangular, the determinant is simply the product of the diagonal entries.)
By Theorem 1.2.1, we have

fylu"'7Yn(y1’y27 s ,yn> = fX(1)7---7X(n) (y17y1 +y2,.. Yyt Y2+ + yn)

Since X1,..., X, are Exp(a) random variables so that they have common density f(z) = %e‘m/a,
x > 0, we find from Theorem 4.3.1 that the joint density of the order statistic is given by

1 a0l 1
IX )Xy (@1, @) = ml Hf(a:z) = n!H e zi/a — n CXP {— xz}

provided 0 < 1 < 3 < --- < xz,. Hence, we conclude

v v W y2s - oun) = Fxgy X (W01 H Y2, -yt Y2+
n! 1
= —exp {—a(nyl +(n—=1Dyo+-+2yp—1+ yn)}

aTL

_ /e, (M=) /a2 oy e L ya/a

a a a a

provided that 0 < y1 < y1 +y2 < -+ <Y1 + -+ yn, or equivalently, y1 > 0, yo > 0,...,y, > 0.
(continued)
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In other words, the density function of Y} is

1-— 1-—
(n+a /{:)exp{_(n—l- k‘)yk}’ e >0,

fYk (yk) = a

so that
a
Y€ Bxp —2— ).
kD <n +1- k>
(b) Note that
Vit Yot 4 Yo =Xy + (X~ X))+ + (X = X)) = Xm)

as in (a). Therefore, since Yj € Exp(;,+7—), we conclude

a a a 1
E(X ) =EY1) +E(Y2) + -+ E(Y,) = — +n+1—2+"'+m:“ y
k=1
and
a? a2 a2 ) n 1
var( X)) = var(Yy)+var(Ye)+- - -+var(Yy) = CE 1)2+(n s +- - '+(n+17—n)2 —a Z e

Problem #21. (a) This is identical to Problem #20(a). Hence, Y} € Exp(ﬁ) for k =
1,2,...,n.

(b) As in Problem #20(b), we see that Y1 + Y5 +--- +Y,, = X(,,) and so

"1 11 1
E(X(n>)22g:1+§+§+”‘+g-
k=1

However, we can also find E(X,)) another way. By Theorem 4.1.2, we know that
fxi (@) =n(l— e T e 0< 1z < oo

and so
o

E(X(n)) = /_"O v fx, (@) dz = / na(l — e %) le= g,

0
Equating these two expressions for E(X(,)) gives

/oo (1 —x)n—l — 14 1 n 1 " I 1
nz(l —e e fdx = T e R
0 2 3 n

as required.

Problem #22. As in Problem #20(b) we see that
X(k) =Yi+Yo+ ---+Y,, k=1,2,...,n,

where Y; € Exp(; +Lj) with Y7,...,Y, independent. This implies that

Zn:nX(1)+(n—1)X(2)+"~+2X(n,1)+X(n)
=nYi+ -1V +Y2) +--+2Vi+Yo+ -+ Y )+ (V1 + Yo+ 4+ V)
=Y1i(1+2+-+n)+Yo(1+2+--+n—-1)+-+ Y, 1(1+2)+ Y,

(continued)

12



Therefore,

EZ)=04+2+--4+n)EY)+1+2+---4+n—-1E o)+ -+ (1+2)E(Y,-1) + E(Ys)

1
_(1_|_2+..._|_n).m+(1+2+...+n_1).m+-..+(1+2)-n+1_(n_1)—|—1
nn+1) 1 (n—1n 1 23) 1
n+1l n 3 2
k1
k=1 2
_nn+1) n
T4 T2
_ n(n+3)
==
Furthermore,

var(Zp) = (14+2+---+n)?var(Y1) + (14+2+--- +n—1)?var(Ya) + --- + (1 + 2)?var(Y,_1) + var(Yy,)
nn+1) 1\*> [((n—1n 1 \? 2(3) 1)2
=<2'n> +( 2 'n_1> +"'+<2'2) 1

k
(n+1)(n+2)2n+3)] 1
6
n(2n? + 9n + 13)
24 )
Problem #24. The key observation is that

Using the fact from Stat 251 that the sum of n independent and identically distributed Exp(a)
random variables has a gamma distribution with parameters n and a, we conclude that

ZX(Z) S F(n,a).
i=1

Problem #27. Since X7, Xo, ... are i.i.d. U(0,1) random variables, they have common distribu-
tion function

0, =<0,
Flz)=<z, 0<z<l,
1, x>1.

(continued)
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Thus, if we let X(,,) = max{X1,..., Xp}, then by Theorem 4.1.1, the distribution function of X,
is

0, wy<0,
FX(n) (y) = yn’ 0< y < 1a
L, y=>1L

Now let V' = max{Xy,...,Xn} where N € Po(}\) is independent of X1, Xo,.... If we condition on
the value of N, then there are two cases to consider. Either N = 0 which happens with probability
P(N =0) =e and so

P(V=0)=P(N=0)=e?,

or N > 1 in which case the distribution function of V|N =n, n =1,2,3,..., is given by

0, wv<0,
Fyin=p(v) = 0", 0<v <1,
1, ov>1.

Thus, the density function of VN =n, n=1,2,3,..., is given by

finen(0) =" 0<o < 1.

Finally, we conclude using the law of total probability that the (unconditional) density of V' (in the
case N > 1) is

00 0 B )\ne—)\ e—/\ oot )™ 6_/\ 0o o n—1
Fol) = 2 Fonen PN =) = ) ™0 e = 2 (T(L )1)! =Y En ) i

To summarize, we have
e P(V=0)=e* and
o fy(v) =XM1V 0 << 1.
Notice that
1 1
PV =0) +/ fv(w)dv = e —|—/ Ae Mgy — e pe et —1) =1
0 0

as expected. Note that V is an example of a random variable which is neither continuous nor
discrete. The expected value of V' is given by

1 1 1
E(V)=0-P(V=0) +/ vfy(v)dv = / Ave A=) gy, — e_’\/ \ve M dy
0 0 0

- A
e
= — wedu
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