
Statistics 351 (Fall 2008)
The t-Test for Independent Normal Random Variables

Our goal for this lecture is to explain the t-test from first-year statistics.

Theorem. Let X1, X2, . . . , Xn be independent and identically distributed N (µ, σ2) random
variables, and suppose that

X =
1

n

n∑
j=1

Xj and S2 =
1

n− 1

n∑
j=1

(Xj −X)2

denote the sample mean and sample variance, respectively. If we define the random variable

T =
X − µ

S/
√
n
,

then T ∈ t(n− 1); that is, T has a t-distribution with n− 1 degrees of freedom.

The main step in the proof of this theorem is the independence of X and S2 established last
lecture. However, there are a number of other preliminary results that will also be needed.

Definition. For m = 1, 2, 3, . . ., we say that a random variable X has a t-distribution with
m degrees of freedom if the density function of X is

fX(x) =
Γ

(
m+1

2

)
√
πmΓ

(
m
2

) (
1 +

x2

m

)−m+1
2

, −∞ < x <∞.

Definition. For m = 1, 2, 3, . . ., we say that a random variable X has a chi-squared distri-
bution with m degrees of freedom if the density function of X is

fX(x) =
2−m/2

Γ(m/2)
x

m
2
−1e−x/2, x > 0.

In other words, X ∈ χ2(m) if and only if X ∈ Γ(m/2, 2).

Remark. Observe that χ2(2) = Γ(1, 2) = Exp(2).

Example. Show that if Z ∈ N (0, 1), then Z2 ∈ χ2(1).

Solution. Suppose that Y = Z2. For y > 0, the distribution function of Y is

FY (y) = P{Y ≤ y} = P{Z2 ≤ y}
= P{−√y ≤ Z ≤ √

y}
= P{Z ≤ √

y} − P{Z ≤ −√y}

=
1√
2π

∫ √
y

0

exp

{
−z

2

2

}
dz − 1√

2π

∫ −√y

0

exp

{
−z

2

2

}
dz



so that the density of Y is

fY (y) = F ′
Y (y) =

1√
2π
e−y/2 · 1

2
√
y
− 1√

2π
e−y/2 ·

(
− 1

2
√
y

)
=

1√
2π
y−1/2e−y/2, y > 0.

Since Γ(1/2) =
√
π, we recognize the density of Y as the density of a χ2(1) random variable.

That is, Z2 ∈ χ2(1) as required.

Example. If Y1 ∈ Γ(p1, a) and Y2 ∈ Γ(p2, a) are independent, show Y1 + Y2 ∈ Γ(p1 + p2, a).

Solution. The easiest way to verify this is to use moment generating functions. Recall
from Theorem III.3.2 that the moment generating function of a sum of independent random
variables is the product of the moment generating functions so that

ψY1+Y2(t) = ψY1(t) · ψY2(t).

As shown on page 70, the moment generating function of Y ∈ Γ(p, a) is

ψY (t) =
1

(1− at)p
for t <

1

a
.

Hence,

ψY1+Y2(t) = ψY1(t) · ψY2(t) =
1

(1− at)p1
· 1

(1− at)p2
=

1

(1− at)p1+p2

for t < 1/a so that Y1 + Y2 ∈ Γ(p1 + p2, a) as required.

Example. In particular, combining the last two examples yields the following fact. If
Z1, . . . , Zn are independent and identically distributed N (0, 1) random variables, then

Z2
1 + · · ·+ Z2

n ∈ χ2(n).

Example. Suppose that X1, . . . , Xn are independent random variables with Xj ∈ N (µj, σ
2
j )

for j = 1, . . . , n. Normalizing implies

Zj =
Xj − µj

σj

∈ N (0, 1)

so that we conclude
n∑

j=1

(
Xj − µj

σj

)2

∈ χ2(n).

In particular, if X1, . . . , Xn are i.i.d. N (µ, σ2), then

1

σ2

n∑
j=1

(Xj − µ)2 ∈ χ2(n). (∗)

Example. IfX1, X2, . . . , Xn are independent and identically distributedN (µ, σ2), show that

X =
1

n

n∑
j=1

Xj ∈ N (µ, σ2/n).



Solution. This can be shown using moment generating functions. That is, recall that if
X ∈ N (µ, σ2), then

ψX(t) = exp

{
µt+

σ2t2

2

}
.

Using Theorem III.3.2 for the moment generating function of a sum of independent random
variables, we conclude

ψX(t) =
n∏

j=1

ψXj
(t/n) = exp

{
n∑

j=1

(
µ
t

n
+
σ2t2

2n2

)}
= exp

{
µt+

σ2t2

2n

}
which we recognize as the moment generating function of a N (µ, σ2/n) random variable.

Example. Let X1, X2, . . . , Xn be independent and identically distributed N (µ, σ2) random
variables, and let

S2 =
1

n− 1

n∑
j=1

(Xj −X)2

be the sample variance. We write

(Xj −X)2 = (Xj − µ+ µ−X)2 = (Xj − µ)2 + (X − µ)2 − 2(Xj − µ)(X − µ)

and observe that

n∑
j=1

(Xj − µ)(X − µ) = (X − µ)
n∑

j=1

(Xj − µ) = (X − µ)(nX − nµ) = n(X − µ)2

which gives

n∑
j=1

(Xj −X)2 =
n∑

j=1

(Xj − µ)2 +
n∑

j=1

(X − µ)2 − 2n(X − µ)2 =
n∑

j=1

(Xj − µ)2 − n(X − µ)2.

We now write
(n− 1)S2

σ2
=

1

σ2

n∑
j=1

(Xj − µ)2 − n

σ2
(X − µ)2,

or equivalently,
1

σ2

n∑
j=1

(Xj − µ)2 =
(n− 1)S2

σ2
+

n

σ2
(X − µ)2.

Let

U =
1

σ2

n∑
j=1

(Xj − µ)2, U1 =
(n− 1)S2

σ2
, U2 =

n

σ2
(X − µ)2

so that U = U1 + U2, and observe from (??) that

U =
1

σ2

n∑
j=1

(Xj − µ)2 ∈ χ2(n).



We also observe that

U2 =
n

σ2
(X − µ)2 =

(
X − µ

σ/
√
n

)2

∈ χ2(1)

since
X − µ

σ/
√
n
∈ N (0, 1).

Since X and S2 are independent, we conclude that U1 and U2 are independent. Thus,
using Theorem III.3.2 for the moment generating function of a sum of independent random
variables, we see that ψU(t) = ψU1(t)·ψU2(t) and so using the facts that U ∈ χ2(n) = Γ(n/2, 2)
and U2 ∈ χ2(1) = Γ(1/2, 2), we conclude

ψU1(t) =
ψU(t)

ψU2(t)
=

1
(1−2t)n/2

1
(1−2t)1/2

=
1

(1− 2t)(n−1)/2
for t <

1

2

That is, U1 ∈ Γ((n− 1)/2, 2) = χ2(n− 1) or, in other words,

(n− 1)S2

σ2
∈ χ2(n− 1).

Example. Show that if Z ∈ N (0, 1) and Y ∈ χ2(m) are independent random variables,
then

Z√
Y/m

∈ t(m).

Solution. This was actually Problem I.9 on Assignment #3.

We can finally prove our desired theorem and establish the t-test.

Proof. The fact that X and S2 are independent implies that

Z =
X − µ

σ/
√
n
∈ N (0, 1)

and

Y =
(n− 1)S2

σ2
∈ χ2(n− 1)

are also independent. Thus, by the previous example,

Z√
Y/(n− 1)

=

X−µ
σ/
√

n√
(n−1)S2

σ2 /(n− 1)
=
X − µ

S/
√
n
∈ t(n− 1)

and the proof is complete.


