
Statistics 351–Intermediate Probability
Fall 2008 (200830)

Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that fX,Y (x, y) ≥ 0 for all 0 < x, y < 1, and that∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dxdy =

∫ 1

0

∫ y

0
10xy2 dxdy =

∫ 1

0
5y4 dy = y5

∣∣∣∣1
0

= 1.

Thus, fX,Y is a legitimate density.

1. (b) We compute

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1

x
10xy2 dy =

10x(1− x3)
3

, 0 < x < 1.

1. (c) We compute

E(X) =
∫ ∞

−∞
xfX(x) dx =

∫ 1

0
x · 10x(1− x3)

3
dx =

10
9
− 10

18
=

5
9
.

1. (d) We compute

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

10xy2

10x(1−x3)
3

=
3y2

1− x3
, x < y < 1.

1. (e) We compute

E(Y |X = x) =
∫ ∞

−∞
yfY |X=x(y) dy =

∫ 1

x
y · 3y2

1− x3
dy =

3(1− x4)
4(1− x3)

.

1. (f) Using properties of conditional expectation (Theorem II.2.1), we compute

E(Y ) = E( E(Y |X) ) = E

(
3(1−X4)
4(1−X3)

)
=
∫ 1

0

3(1− x4)
4(1− x3)

· 10x(1− x3)
3

dx =
5
2

∫ 1

0
x− x5 dx =

5
6
.

1. (g) If U = XY and V = Y , then solving for X and Y gives X = U/V and Y = V , so that the
Jacobian of this transformation is

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣1/v −u/v2

0 1

∣∣∣∣ = 1
v
.

By Theorem I.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (u/v, v) · |J | = 10uv−1v2 · v−1 = 10u

provided that 0 < u < v2 < 1 and v > 0. It then follows that the density function of U is given by

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ 1

√
u
10u dv = 10u(1−

√
u)

provided that 0 < u < 1.



2. (a) The density function of X is given by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dxdy =

∫ ∞

−∞
fX|Y =y(x) · fY (y) dy.

Substituting in gives

fX(x) =
∫ ∞

0
θyxθ−1 exp{−yxθ} · ap

Γ(p)
yp−1e−ay dy =

ap

Γ(p)
θxθ−1

∫ ∞

0
yp exp

{
−y(a + xθ)

}
dy.

Properties of the gamma function imply that∫ ∞

0
yp exp

{
−y(a + xθ)

}
dy = Γ(p + 1) · (a + xθ)−(p+1)

so that

fX(x) =
ap

Γ(p)
θxθ−1 · Γ(p + 1) · (a + xθ)−(p+1) =

p ap θ xθ−1

(a + xθ)p+1

provided that x > 0 (and using the fact that Γ(p + 1) = pΓ(p).)

2. (b) If Z = Xθ, then the density function of Z is

fZ(z) = fX(z1/θ) · d
dz

z1/θ =
p ap θ z1−1/θ

(a + z)p+1
· 1
θ
z1/θ−1 =

p ap

(a + z)p+1

provided that z > 0.

3. There are two ways to compute the resulting integral, depending on the order of integration.
One way is much easier than the other.

Solution 1: ( dy dx)
We begin by noticing that

P{X < Y } =
∫∫

{x<y}

fX,Y (x, y) dy dx =
∫ ∞

0

∫ ∞

x

x

27
exp

{
−x + y

3

}
dy dx

=
∫ ∞

0

x

27
e−x/3

∫ ∞

x
e−y/3 dy dx.

We now find ∫ ∞

x
e−y/3 dy = 3e−x/3

which implies that

P{X < Y } =
∫ ∞

0

x

9
e−2x/3 dx.

We recognize this as a Gamma function; that is,∫ ∞

0

x

9
e−2x/3 dx =

1
4

∫ ∞

0

4x

9
e−2x/3 dx =

1
4

∫ ∞

0
ue−u du =

1
4
Γ(2) =

1
4
.



Solution 2: ( dxdy)
In this case, we find

P{X < Y } =
∫∫

{x<y}

fX,Y (x, y) dxdy =
∫ ∞

0

∫ y

0

x

27
exp

{
−x + y

3

}
dxdy

=
1
3

∫ ∞

0
exp

{
−y

3

}∫ y

0

x

9
exp

{
−x

3

}
dxdy.

We now observe (using the integration-by-parts formula given on the first page with a = 1/3) that∫ y

0

x

9
exp

{
−x

3

}
dx =

(
−x

3
e−x/3 − e−x/3

) ∣∣∣∣y
0

= 1− y

3
e−y/3 − e−y/3.

Substituting back in gives

P{X < Y } =
1
3

∫ ∞

0
e−y/3

(
1− y

3
e−y/3 − e−y/3

)
dy

=
1
3

∫ ∞

0
e−y/3 − y

3
e−2y/3 − e−2y/3 dy

=
∫ ∞

0

1
3
e−y/3 − y

9
e−2y/3 − 1

3
e−2y/3 dy

The easiest way to calculate these integrals is to recognize them as densities. That is,∫ ∞

0

1
3
e−y/3 dy = 1,

∫ ∞

0

1
3
e−2y/3 dy =

1
2

∫ ∞

0

2
3
e−2y/3 dy =

1
2
,

and ∫ ∞

0

y

9
e−2y/3 dy =

1
4

∫ ∞

0

4y

9
e−2y/3 dy =

1
4
.

Thus, we finally conclude that

P{X < Y } = 1− 1
2
− 1

4
=

1
4
.

4. (a) The distribution of X is U(0, 1) so that

fX(x) = 1, 0 < x < 1,

and the conditional distribution of Y |X = x is U(x, 1) so that

fY |X=x(y) =
1

1− x
, x < y < 1.

Therefore, the joint density function of (X, Y )′ is

fX,Y (x, y) = fY |X=x(y) · fX(x) =
1

1− x

provided that 0 < x < y < 1.



4. (b) Using Corollary II.2.3.1 on page 39, we know

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)).

Since Y |X = x is U(x, 1) we know that E(Y |X = x) = (1 + x)/2 and Var(Y |X = x) = (1− x)2/12
so that

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)) = E

(
(1−X)2

12

)
+ Var

(
1 + X

2

)
=

1
12

− E(X)
6

+
E(X2)

12
+

Var(X)
4

.

Since X is U(0, 1), we know that E(X) = 1/2 and Var(X) = 1/12 so that E(X2) = 1/3. Thus, we
conclude that

Var(Y ) =
1
12

− 1
12

+
1
36

+
1
48

=
7

144
.

5. (a) Since X1 and X2 are independent and identically distributed Γ(2, 1) random variables, they
have common density function

f(x) = xe−x, x > 0,

and common distribution function

F (x) =
∫ x

0
ue−u du = 1− xe−x − e−x

for x > 0 (and F (x) = 0 for x ≤ 0) using the integration-by-parts formula given on the first page.
Therefore, it follows from Theorem IV.1.2 that the density function of X(1) is

fX(1)
(y) = 2(1− F (y))f(y) = 2ye−y(ye−y + e−y) = 2y(y + 1)e−2y

provided that y > 0.

5. (b) It follows from Theorem IV.1.2 that the density function of X(2) is

fX(2)
(y) = 2F (y)f(y) = 2ye−y(1− ye−y − e−y)

provided that y > 0.

5. (c) It follows from Theorem IV.2.1 that the density function of (X(1), X(2))′ is

fX(1),X(2)
(y1, y2) = 2f(y1)f(y2) = 2y1y2e

−y1−y2

provided that 0 < y1 < y2 < ∞.

5. (d) If U = X(1)/X(2) and V = X(2), then solving for X(1) and X(2) gives X(1) = UV and
X(2) = V so that the Jacobian of this transformation is

J =

∣∣∣∣∣
∂y1

∂u
∂y1

∂v

∂y2

∂u
∂y2

∂v

∣∣∣∣∣ =
∣∣∣∣v u
0 1

∣∣∣∣ = v.

By Theorem I.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX(1),X(2)
(uv, v) · |J | = 2uv3e−uv−v

provided that 0 < u < 1 and 0 < v < ∞.



It now follows that the density function of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

0
2uv3e−uv−v dv = 2u

∫ ∞

0
v3e−v(u+1) dv = 2u · Γ(4)(u + 1)−4

=
12u

(1 + u)4

provided that 0 < u < 1 and using properties of the gamma function.

6. (a) In order to find the eigenvalues of ΛΛΛ, we must find those values of λ such that det[ΛΛΛ−λI] = 0.
Therefore,

det[ΛΛΛ− λI] = det

3
2 − λ −

√
3

2

−
√

3
2

5
2 − λ

 =
(

3
2
− λ

)(
5
2
− λ

)
− 3

4
= λ2 − 4λ + 3 = (λ− 1)(λ− 3)

so that the eigenvalues of ΛΛΛ are λ1 = 1 and λ2 = 3.

6. (b) Since λ1 = 1,

[ΛΛΛ− λ1I |000] =

[
1
2 −

√
3

2 0
−
√

3
2

3
2 0

]
∼

[
1
2 −

√
3

2 0
0 0 0

]
∼
[

1 −
√

3 0
0 0 0

]
,

and since λ2 = 3,

[ΛΛΛ− λ2I |000] =

[
−3

2 −
√

3
2 0

−
√

3
2 −1

2 0

]
∼

[
−3

2 −
√

3
2 0

0 0 0

]
∼
[
−3 −

√
3 0

0 0 0

]
,

we conclude that eigenvectors for λ1 and λ2 are

v1 =
[√

3
1

]
and v2 =

[
−1√

3

]
,

respectively. Therefore, the diagonal matrix is

D = diag(λ1, λ2) =
[
λ1 0
0 λ2

]
=
[
1 0
0 3

]
and the orthogonal matrix is

C =
[

v1

||v1||
v2

||v2||

]
=

√
3

2 −1
2

1
2

√
3

2


since ||v1|| = ||v2|| = 2.

6. (c) Since det[ΛΛΛ] = 3, we see that

ΛΛΛ−1 =

 5
6 −

√
3

6

−
√

3
6

1
2

 .



Therefore, the density function of X is

fX(x1, x2) =
1

2π
√

3
exp

{
−1

2

(
5
6
x2

1 +
√

3
3

x1x2 +
1
2
x2

2

)}

provided that −∞ < x1, x2 < ∞.

6. (d) Since X1 ∈ N (0, 3/2) we see that

fX1(0) =
√

2√
2π
√

3

so that, by definition,

fX2|X1=0(x2) =
fX(0, x2)
fX1(0)

=
1

2π
√

3
exp

{
−1

2

(
1
2x2

2

)}
√

2√
2π
√

3

=
1√

2
√

2π
exp

{
−1

4
x2

2

}
.

Thus, we conclude that X2|X1 = 0 has a N (0, 2) distribution.

6. (e) If Y = C ′X, then by Theorem V.3.1, Y is MVN with mean C ′µµµ and covariance matrix
C ′ΛΛΛC ′′ = C ′ΛΛΛC = D using our result from (b). Hence, we conclude

Y ∈ N

([
0
0

]
,

[
1 0
0 3

])
.

6. (f) Since Y is multivariate normal we know from Definition I that Y1 and Y2 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (e) we know that Cov(Y1, Y2) = 0 so that Y1 and Y2 are,
in fact, independent.

6. (g) We know from (e) that if Y = C ′X, then Y ∈ N (000, D) so that Q(x) = x′ΛΛΛ−1x = y′D−1y =
Q(y). Setting Q(y) = 1 gives

y2
1

λ1
+

y2
2

λ2
= y2

1 +
y2
2

3
= 1.

This describes an ellipse centred at the origin passing through the points (0,
√

3)′, (0,−
√

3)′, (1, 0)′,
and (−1, 0)′. We now notice that we can write C as

C =

√
3

2 −1
2

1
2 −

√
3

2

 =
[
cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

]
.

This matrix describes a counterclockwise rotation by π/6 = 30◦. Thus,

Q(x) = x′ΛΛΛ−1x =
5
6
x2

1 +
√

3
3

x1x2 +
1
2
x2

2 = 1

describes the same ellipse rotated by π/6. In other words, it is an ellipse passing through the points

C

[
0√
3

]
=

(
−
√

3
2

,
3
2

)′

, C

[
0

−
√

3

]
=

(√
3

2
,−3

2

)′

, C

[
1
0

]
=

(√
3

2
,
1
2

)′

, C

[
−1
0

]
=

(
−
√

3
2

,−1
2

)′

.



7. (a) Let

B =
[
1/σ1 −ρ/σ2

0 1/σ2

]
so that Y = BX. By Theorem V.3.1, Y is MVN with mean

Bµµµ =
[
1/σ1 −ρ/σ2

0 1/σ2

] [
0
0

]
=
[
0
0

]
and covariance matrix

BΛΛΛB′ =
[
1/σ1 −ρ/σ2

0 1/σ2

] [
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

] [
1/σ1 0
−ρ/σ2 1/σ2

]
=
[
1− ρ2 0

0 1

]
.

7. (b) Since Y is multivariate normal we know from Definition I that Y1 and Y2 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (a) we know that Cov(Y1, Y2) = 0 so that Y1 and Y2 are,
in fact, independent.

8. We know from Theorem V.9.1 that X′ΛΛΛ−1X ∈ χ2(3). Thus, the required matrix A is

A = ΛΛΛ−1 =

 2 −1 0
−1 1 0
0 0 1/3

 .

9. If Mn = S3
n − 3nSn, then

Mn+1 = S3
n+1 − 3(n + 1)Sn+1 = (Sn + Yn+1)3 − 3(n + 1)(Sn + Yn+1)

= S3
n + 3S2

nYn+1 + 3SnY 2
n+1 + Y 3

n+1 − 3(n + 1)Sn − 3(n + 1)Yn+1

= Mn + 3Sn(Y 2
n+1 − 1) + 3S2

nYn+1 − 3(n + 1)Yn+1 + Y 3
n+1.

Thus, we see that we will be able to conclude that {Mn, n = 0, 1, . . .} is a martingale if we can
show that

E
(
3Sn(Y 2

n+1 − 1) + 3S2
nYn+1 − 3(n + 1)Yn+1 + Y 3

n+1|Sn

)
= 0.

Now
3E(Sn(Y 2

n+1 − 1)|Sn) = 3SnE(Y 2
n+1 − 1) and 3E(S2

nYn+1|Sn) = 3S2
nE(Yn+1)

by “taking out what is known,” and using the fact that Yn+1 and Sn are independent. Furthermore,

3(n + 1)E(Yn+1|Sn) = 3(n + 1)E(Yn+1) and E(Y 3
n+1|Sn) = E(Y 3

n+1)

using the fact that Yn+1 and Sn are independent. Since E(Yn+1) = 0, E(Y 2
n+1) = 1, and E(Y 3

n+1) =
0, we see that

E(Mn+1|Mn) = Mn + 3SnE(Y 2
n+1 − 1) + 3S2

nE(Yn+1)− 3(n + 1)E(Yn+1) + E(Y 3
n+1)

= Mn + 3Sn · (1− 1) + 3S2
n · 0− 3(n + 1) · 0 + 0

= Mn

which proves that {Mn, n = 0, 1, 2, . . .} is, in fact, a martingale.



10. (a) The optional sampling theorem applied to the martingale {Sn, n = 0, 1, 2, . . .} gives
E(ST ) = E(S0) = 0. Since

E(ST ) = −aP (ST = −a) + bP (ST = b) = −a[1− P (ST = b)] + bP (ST = b)

we see that
−a[1− P (ST = b)] + bP (ST = b) = 0

which solving for P (ST = b) gives
P (ST = b) =

a

a + b

as required.

10. (b) The optional sampling theorem applied to the martingale {Xn, n = 0, 1, 2, . . .} gives
E(XT ) = E(X0) = 0. But E(XT ) = E(S2

T −T ) and E(X0) = 0 which implies that E(S2
T )−E(T ) =

0. Since

E(S2
T ) = (−a)2P (ST = −a) + b2P (ST = b) = a2

(
1− a

a + b

)
+ b2

(
a

a + b

)
= ab

using our result from (a), we conclude that

E(T ) = ab

as required.

11. (a) Let {Xt, t ≥ 0} denote the Poisson process with intensity 1 according to which subway
trains arrive (where t is measured in units of four minutes). The random number of subway trains
that arrive in one hour (i.e., 15 time units) is X15. Since Xt ∈ Po(t) for all t by the Poisson process
assumption, we conclude that E(X15) = 15.

11. (b) If we use the fact that a Poisson process resets at fixed times, then the probability that
Christian will wait at least 8 minutes (i.e., 2 time units) for the next train to arrive is

P (T1 ≥ 2) = P (X2 ≤ 1) = P (X2 = 0) + P (X2 = 1) =
e−220

0!
+

e−221

1!
= 3e−2

using the fact that X2 ∈ Po(2).

11. (b) We again use the fact that a Poisson process resets at fixed times. The probability that
at least three trains pass Christian in the 16 minutes (i.e., 4 time units) while he is waiting for
Veronica is

P (X4 ≥ 3) = 1− P (X4 < 3) = 1− P (X4 = 0)− P (X4 = 1)− P (X4 = 2)

= 1− e−440

0!
− e−441

1!
− e−442

2!
= 1− 13e−4.


