Statistics 351-Intermediate Probability
Fall 2008 (200830)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that fxy(x,y) >0 for all 0 < z,y < 1, and that

00 oo 1 ry 1 1
/ / fxy(z,y)dedy = / / 10;13y2 drdy = / 5y4 dy = y5 - 1.
—0o0 J —00 0 0 0 0
Thus, fxy is a legitimate density.
1. (b) We compute
> ! 10z(1 — 23
fx (@) = / fxy(z,y)dy = / 10zy* dy = x(gx), 0<xz<l.
1. (c) We compute
> Lo 10x(1 — 2?) 10 10 5
E X == d — E e — d = — = — = —,
( )./m@&@)x Z;x 3 TY T8 9

1. (d) We compute

fxy(z,y) 102y° 3y
fY|X::E(y) = fX(l‘) = 10z(1—a3) = 1 _ 23’ T <y< 1.
3

1. (e) We compute

0o 1 3 2 3(1 — 4
EY[X =z) :/ ny|X:m(y)dy :/ Y- 1 £/$3 dy = M

1. (f) Using properties of conditional expectation (Theorem I1.2.1), we compute

3(1— Xx* 13(1—a* 10x(1—23 5 (1 5
B = B 0) =B (32 ) = [S0=E) 0o o 8 e =

1. (g) f U = XY and V =Y, then solving for X and Y gives X = U/V and Y =V, so that the
Jacobian of this transformation is

ox Oz

ou v /v —u/v? 1

J = = =—.
dy Oy 0 1 v
ou Ov

By Theorem 1.2.1, the joint density of (U, V')’ is therefore given by
fov(u,v) = fxy(u/v,v)-|J| = 10uw™? - v = 10u

provided that 0 < u < v? < 1 and v > 0. It then follows that the density function of U is given by

e 1
fuu) = / fov(u,v)dv = /f 10udv = 10u(1 — y/u)

provided that 0 < u < 1.



2. (a) The density function of X is given by

r) = /OO [xy(z,y)dedy = /00 Ixy=y(®) - fy(y)dy

Substituting in gives

0 P aP 9]
= Oyz?~! exp{—ya?’ LY plemay gy — 91’9_1/ Pexp 4 —y(a+ %)} dy.
/0 y {—ya"} )Y V=T v { y( )} y

Properties of the gamma function imply that

/ y¥ exp {—y(a + g;@)} dy=T(p+1)- (a+a?)~@D
0

so that -
a? _ _ paP @z’
= 92~ 1. T 1) - O—(p+1) — 2% 7~
fx(x) T(p) x (p+1)-(a+2") (a + 20)p+1
provided that z > 0 (and using the fact that I'(p + 1) = pI'(p).)
2. (b) If Z = X, then the density function of Z is
d al 2110 1 aP
- A VR e v N
J2(z) = Jx(=7) az” (a+ z)ptt 6° (a+ z)ptt

provided that z > 0.

3. There are two ways to compute the resulting integral, depending on the order of integration.
One way is much easier than the other.

Solution 1: (dydx)
We begin by noticing that

P{X<Y}—//nymydyd:U—/ / ep{ ;)— }dydx

{z<y}
_ —:1:/3 —y/3
/0 27 /x e dy dx.

/00 e Y3 dy = 3e /3
T

*®x
P{X <Y} =/ 56_29”/3 dz.
0

We now find

which implies that

We recognize this as a Gamma function; that is,

OO5*29«“/3(1 _1/00433250/3(1 _1/00 —uq :1112 _1
/096 x4096 w40ueu4() 1



Solution 2: (dzdy)
In this case, we find

© ry
P{X<Y}—//fxy(x,y)dxdy—/ / iexp Tty dzdy
: o Jo 27 3
{z<y}
:1/ooexp{—y}/y$exp{—x} dz dy
3/ 3 ), 9 3 '

We now observe (using the integration-by-parts formula given on the first page with a = 1/3) that

[ (5o (o)
0

Substituting back in gives

y
1Yoy _ /3
0

P{X<Y}= ;/ e~ V/3 (1 _ %e—y/i’) _ e—y/3> dy
0

1 [ Y
= 3/0 e Y3 _ §€—2y/3 — e W3 gy
- /OO §6_y/3 _ %e—2y/3 _ ée—2y/3 dy
0

The easiest way to calculate these integrals is to recognize them as densities. That is,

o< o< 1 [®2 1
Lou g, -1 12y :/ 223, — 1
/D g Py =1, /0 3¢ v=3] 3¢ v=r5

Y w8y _1/0042‘/—211/3(1 _1
/0 9° Y=4), o° Y=1

Thus, we finally conclude that

and

111
PIX<Y}=1-s—>=".
X<y 2 1 4

4. (a) The distribution of X is U(0,1) so that
fx(x)=1, 0<z<1,

and the conditional distribution of Y| X = z is U(z, 1) so that

1
frix=2(y) = 11— ¥5Y< L

Therefore, the joint density function of (X,Y) is

1
l1—=x

fxy(@y) = fyix==(y) - fx(z) =

provided that 0 <z <y < 1.



4. (b) Using Corollary I1.2.3.1 on page 39, we know
Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

Since Y|X =z is U(z,1) we know that E(Y|X =) = (1+2)/2 and Var(Y|X = z) = (1 — 2)?/12
so that

)2

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)) = E <(112X)> (1 ; X)
1 BE(X) E(X?) Var(X
126 T T

Since X is U(0,1), we know that E(X) = 1/2 and Var(X) = 1/12 so that E(X?) = 1/3. Thus, we

conclude that ) ) ) . .
VaV) =5 -5 %t w1

5. (a) Since X; and X5 are independent and identically distributed I'(2, 1) random variables, they
have common density function
flz) =z, x>0,

and common distribution function
X
F(x) = / ve “du=1—ze ™ —e "
0

for z > 0 (and F(z) = 0 for < 0) using the integration-by-parts formula given on the first page.
Therefore, it follows from Theorem IV.1.2 that the density function of X(y) is

Fxo, (W) =201 = F(y)) f(y) = 2ye Y (ye ¥ +e7¥) = 2y(y + 1)~
provided that y > 0.
5. (b) It follows from Theorem IV.1.2 that the density function of Xy is
fxo (W) =2F(y) f(y) =2ye (1 —ye ¥ —e7Y)
provided that y > 0.
5. (c) It follows from Theorem IV.2.1 that the density function of (X (), X(9))’ is
Ix )Xo W1, y2) = 2f (1) f(y2) = 2y1y2e™ 74

provided that 0 < y1 < y2 < 0.

5. (d) f U = X(;)/X(2) and V = X(9), then solving for X(;) and X9 gives X(;) = UV and
X(2) =V so that the Jacobian of this transformation is

oy Oy

J = ou ov _ vou —
dy2  Oy2 0 1
ou ov

By Theorem 1.2.1, the joint density of (U, V) is therefore given by

fow (u,v) = fx ) X (w0, 0) - |J| = 2uv’e ™"

provided that 0 <« <1 and 0 < v < c0.



It now follows that the density function of U is

fulu) = / fov(u,v)dv = / 2uude™ T dy = 2u/ W3e W) dy = 20 - T(4) (u+ 1)
—00 0 0

12u
(14 u)*

provided that 0 < u < 1 and using properties of the gamma function.

6. (a) In order to find the eigenvalues of A, we must find those values of A such that det[A—\I] = 0.
Therefore,

V3

5-A =% 3 5 3
det[A — \I] = det = (-2 (== A)-S=XN-D+3=0-1)(-3
A =det [ G- (5-2)-3 F3= (- D(A-3)
2 2
so that the eigenvalues of A are \; = 1 and Ay = 3.
6. (b) Since \; =1,
L3 o 1 _¥3 | 1 —v3]|o
_ _ 2 2 ~ | 2 2 ~
w-wno=| 4 T[]~ 18 [~ L )
and since \g = 3,
_3 V3 |y _3 _V3 |y -3 —V31|0
_ _ 2 2 ~ 2 2 ~

we conclude that eigenvectors for A\; and Ay are

an[7] [

respectively. Therefore, the diagonal matrix is

. A0 1 0
D = diag(A\1, \2) = {01 )\2] = [O 3}

and the orthogonal matrix is

v3 1
C: |: Vi Vo :| _ 2 2
[[vall [lvell 1 3
2 2
since ||v1]] = ||v2]| = 2.
6. (c) Since det[A] = 3, we see that
5  _ V3
A_l _ 6 6
_V3 1
6 2



Therefore, the density function of X is

1 1(5 V3 1
fx(ml, xg) = 271_\/3 exp {—2 (6.%'% + ?.11332 + 21‘%) }

provided that —oo < x1, 22 < 0.

6. (d) Since X; € N(0,3/2) we see that

V2
le (0) =
V23
so that, by definition,
p (og) = Ix(0.72) waP ) 1 {_1x2}
BT ) 2 Vavar LAt

Thus, we conclude that X|X; = 0 has a N(0,2) distribution.

6. (e) If Y = C'X, then by Theorem V.3.1, Y is MVN with mean C’p and covariance matrix
C'AC" = C"AC = D using our result from (b). Hence, we conclude

v (b 9

6. (f) Since Y is multivariate normal we know from Definition I that Y7 and Y5 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (e) we know that Cov(Y7,Y2) = 0 so that Y7 and Y5 are,
in fact, independent.

6. (g) We know from (e) that if Y = C’X, then Y € N(0, D) so that Q(x) = XA~ 'x = y'D7ly =
Q(y). Setting Q(y) = 1 gives

2 2 2

Y1 Y 2, Y
L 22 a2y 2
NN T3

This describes an ellipse centred at the origin passing through the points (0, \/g)/, (0, —\/g)’, (1,0),
and (—1,0)’. We now notice that we can write C' as

C— § -3 _ |cos(m/6) —sin(7/6)
1 _@ sin(w/6)  cos(w/6) |

This matrix describes a counterclockwise rotation by /6 = 30°. Thus,

D 3 1
Q(x)=xA"1x = éx% + \folxg + 5:1:3 =1

describes the same ellipse rotated by 7 /6. In other words, it is an ellipse passing through the points

o[l =(-33) e L= (55) b= (53) - <[a]-(+3)-



7. (a) Let

2=

so that Y = BX. By Theorem V.3.1, Y is MVN with mean

. 1/0’1 —p/UQ 0 . 0
B"_[ 0 1/oz | |0] T |0
and covariance matrix

BARB' — /o1 —p/o2 o2 pooa] [ 1oy 0 _ 1—-p2 0
0 /oy | |poroa o3 —p/oa 1/o9 0 1l

7. (b) Since Y is multivariate normal we know from Definition I that Y; and Y5 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (a) we know that Cov(Y7,Y2) = 0 so that Y7 and Y3 are,
in fact, independent.

8. We know from Theorem V.9.1 that X’A7'X € x*(3). Thus, the required matrix A is

2 -1 0
A=A"1=|-1 1 0
0o 0 1/3

9. If M,, = S2 — 3nS,, then

M1 =821 —3(n+1)Spt1 = (Sn + Yni1)® = 3(n + 1)(Sy, + Ynt1)
= 83 4382V, 11 + 38, Y2, + Y2 —3(n+1)S, —3(n+ 1)Yni1
= My, +3S,(Y;2,; — 1) + 38241 — 3(n+ 1) Y1 + Y2 4.

Thus, we see that we will be able to conclude that {M,,n = 0,1,...} is a martingale if we can
show that
E(3Sn(Y2,1 — 1) +352Y,41 — 3(n+ 1)Yps1 + Y,24]S,) = 0.

Now
3E(Sn(Y,2 1 —1)[Sn) =3SnE(Y,2, — 1) and 3E(S2Yp41|Ss) = 3S2E(Yy41)

n

Y

by “taking out what is known,” and using the fact that Y,,+1 and S,, are independent. Furthermore,

3(n + 1) E(Yn41|Sn) =3(n + 1)E(Yn41) and E(Y1§+1‘Sn) = E(Y1§+1)

using the fact that Y;,11 and S,, are independent. Since E(Y,+1) = 0, E(Yn2+1) =1, and E(YT?H) =
0, we see that
E(Myi1|My) = My, + 38, E(Y,2,, — 1) +3S2E(Yny1) — 3(n + 1)E(Yyq1) + E(Y;2,1)
=M, +3S, - (1-1)+352.0-3(n+1)-0+0
= M,

which proves that {M,,,n =0,1,2,...} is, in fact, a martingale.



10. (a) The optional sampling theorem applied to the martingale {S,,n = 0,1,2,...} gives
E(St) = E(Sp) = 0. Since

E(Sr) = —aP(Sp = —a) + bP(St = b) = —a[l — P(Sy = b)] + bP(Sr = b)

we see that
—a[l — P(St =b)]+bP(Sr=b)=0

which solving for P(St = b) gives
P(St=10b) =

as required.

10. (b) The optional sampling theorem applied to the martingale {X,,n = 0,1,2,...} gives
E(Xr) = E(X() = 0. But E(X7) = E(S%2—T) and E(X() = 0 which implies that E(S%)— E(T) =
0. Since

E(S2) = (—a)2P(S7 = —a) + b®P(Sr = b) = a? <1 - i b> + b2 (a i b) = ab

using our result from (a), we conclude that
E(T) =ab
as required.

11. (a) Let {Xy,¢t > 0} denote the Poisson process with intensity 1 according to which subway
trains arrive (where ¢ is measured in units of four minutes). The random number of subway trains
that arrive in one hour (i.e., 15 time units) is X;5. Since X; € Po(t) for all ¢ by the Poisson process
assumption, we conclude that E(X5) = 15.

11. (b) If we use the fact that a Poisson process resets at fixed times, then the probability that
Christian will wait at least 8 minutes (i.e., 2 time units) for the next train to arrive is

—200 —201
e "2 e “2 9
o T T

P(T1>2)=P(X3<1) = P(Xa=0)+ P(Xo = 1) =
using the fact that Xy € Po(2).

11. (b) We again use the fact that a Poisson process resets at fixed times. The probability that
at least three trains pass Christian in the 16 minutes (i.e., 4 time units) while he is waiting for
Veronica is

P(X4>3)=1-P(X4<3)=1-P(X4=0)—P(X;=1)- P(Xy=2)
6_440 6_441 6_442

o 1 2
=1-—13¢"%

=1-




