Statistics 351-Probability I
Fall 2007 (200730)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) We see that fxy(x,y) > 0 for all z, y, and that

00 00 1 Y 1
/ / fxy(z,y) de dy = / / Sry dx dy = / 4y3 dy = y4
—00 J —00 0 0 0

Thus, fx,y is a legitimate density.
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1. (b) We compute

00 1
fx(x) :/ fxy(z,y) dy:/ Sy dy = 4x(1 —2?), 0<z<1.

—00 x

1. (c) We compute
E(X)z/:wfx(x) dw:/olx"lf”(l_xg) dng_gz 1%
1. (d) We compute
fyialy) fX]LZ((i’)y) _ 4x(513:v_yx2) - nyz), r<y<L
1. (e) We compute
E(Y[X =x)= /: Yfyix=(y) dy = /;y' {a iyxz) dy = ;8:?;

[

. (f) Using properties of conditional expectation (Theorem I1.2.1), we compute

_ X3 Lo(1 — a3 1
B) = B(EWX0) - B (3550 ) = [ 245 4t = 5 [o—atas =1,

12 -1
B‘(o 1 —1>

so that Y = BX. By Theorem V.3.1, Y is MVN with mean

2. (a) Let

0

1 2 -1 0
=y 7 ) 0] = (0)
01 1 0 0
and covariance matrix

2 0 -1\ /1 0
BAB’:<(1) f j) 0 1 —1f|{2 1 :(14 8>.
-1 -1 2/ \-1 -1

[an}



2. (b) Note that

so that

Thus, we can conclude

() — L L L(5, 8 T,
= — - —=¢€X —= | = - = — .
Y1,Ys Y1,Y2 m \/6 p 9 6y1 3y1y2 3 y2

2. (c) Since

we can immediately conclude that
©(t1,t2) = exp {—; (1447 + 16t1ts + 5t§)} .
3. (a) Using the results of Section V.6 (in particular, equation (6.2) on page 130) we know that
XalXy =2 € A (92 (e = ), h(1 - ).

Since 0% = 1, 05 = 25, we conclude that

. COV(Xl,XQ) o «

P 0109 5
Therefore,
2
16 = Var(X3|X;) = o3(1 — p*) = 25 (1 — 3‘5) =25—a’
implying that o = 9. Hence, the two possible values of o are & = 3 and o = —3.

3. (b) From (a), we conclude that

(6—-5)=0+a.

= ot

g
1 = E(X2|X; = 6) :,u2+pﬁ(ﬂc—,u1) =B+

o Q

Therefore, if a = 3, then § = —2 and if « = —3, then § = 4.

4. (a) In order to find the eigenvalues of A, we must find those values of A such that det(A—AI) = 0.
Therefore,

6—A 2

det(A—AI) = det ( 9 9_ )

) = (6=X)(9=\)—4 = \2—15A+54—4 = A\2—150+50 = (A—5)(A—10)

so that the eigenvalues of A are \; = 5 and Ay = 10.



4. (b) Since A\ = 5,
1 210 1 20
w-nro=(5 300 ) < (o il )

4 210 2 —1]0
(A_AQI|O)_<2 —10>’”<0 00>

we conclude that eigenvectors for Ay and Ay are

a=(2) = v ()

respectively. Therefore, the diagonal matrix is

. A1 O 5 0
D = dla'g()‘h)\Q) - <01 AQ) - (0 10)

and the orthogonal matrix is

“- ( ol Tl ) - <—12//\/¢55 Z@

and since Ay = 10,

since ||v1]| = ||v2]| = V5.

4. (¢) If Y = C'X, then by Theorem V.3.1, Y is MVN with mean C’p and covariance matrix
C'AC" = C'"AC = D using our result from (b). Hence, we conclude

vex(()-6 )

4. (d) Since Y is multivariate normal we know from Definition I that Y7 and Y3 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are indepen-
dent if and only if they are uncorrelated. From (c) we know that Cov(Y7,Y2) = 0 so that Y; and
Y5 are, in fact, independent.

5. Notice that the density function of Y is non-zero only for 0 < y < 1 which implies that the
density function for X is non-zero only for 0 < x < 1. Therefore, suppose that 0 < y < 1 is fixed
so that fxjy—y(z) = 1/y, 0 < z < y. If we now fix 0 < x < 1, then the range of allowable y is
x < y < 1. Hence, by definition,

1
fxy(@,y) = fxjy=y(2)fy(y) = v 20y°(1 — y) = 20y°(1 — y)
provided that 0 < z < y < 1. Thus, the marginal density function of X is

20 5, 20,

fx(z) = /_Z fxy (@, y)dy = /: 20y%(1 — y)dy = <3y Ve >

1
5 20
=3 g o

T

provided that 0 < z < 1.



6. If U = g(X) and V = h(Y), then solving for X and Y gives X = ¢~ 1(U) and Y = h=}(V), so
that the Jacobian of this transformation is
oz Oz

du v 2 g7 (u) 0 0 0
= = ou = — -1 - — -1
J ‘gy gy‘ 0 Zh=t(v) au” () v ().

By Theorem 1.2.1, the joint density of (U, V') is therefore given by

o () = Py (g™ @) @) 171 = (g™ @) - Fr(h @) - g™ )< 5oh ()

by the assumed independence of X and Y. Since we can write fyy(u,v) as a function of u only
multiplied by a function of v only we conclude that U and V are, in fact, independent with

0 0

fU(U)==.ﬁx(9‘l(U))'2;;9‘l(U) and  fy(v) = fY(h‘l(v))'zﬂ;h‘l(v)

It is worth noting that these calculations are allowed since g and h are strictly increasing and
differentiable.

7. Observe that the expression

/OO /OO fx(.%'l,xg) log (fx<371,$2)> dxl d$2

exactly equals E(log (fx (X1, X2))). Since
1 1

fX(afhl'Q) = %\/T[A]

1
exp{—§I’A_1f},

we see that ) )
E(log (fx (X1, X2))) = — log(2m) —  log(det[A]) — JE(X'A'X).

Now, observe that if

A [ o? p0'102:| then  A-! — 1 { 1/0? —p/0'102:|
poioy o3 |’ 1—p? |—p/oio2 1/02

and so

XA-IX — 1 <X12 X1Xo X22>

_9 4+ 22
1—p2\ o? palag o3

Taking expected values gives

E(X'A™1X) =

1 X3 X1Xy X2 1
El= -2 =2 ) = 1-2p°+1)=2.
1— p? (a% p0102+a% 1—p2( Pt 1)

Combining everything, we conclude that
E(log (fx (X1, X)) = ~ log(2m) — ; log(det[A]) — JE(X'A™'X) = ~log(2r) — | log(det[A]) - 1

and so o roo 1
—/ / fx(z1,z2) log (fx(x1,22)) dzy dxg = 1 4 log(27) + 3 log(det[A])

as required.



8. If .
J
X; = Sn1(Sn — Sn-1).

n=1
then
Xjr1 = X+ 55(Sj41 = 5j)-

Therefore,
E(Xj11]5)) = E(X;+8;(Sj41—57)5;) = E(X;[8;) +E(S;(Sj+1—5))18;) = Xj+S;E(Sj+118;) =57
where we have “taken out what is known” three times. Furthermore,

E(S8j4+1155) = E(S; + Yj4115;) = 55 + E(Yj1) = S;

where we have again “taken out what is known,” and have used the facts that Y;,; and S; are
independent and E(Yj41) = 0. Combining everything gives

E(X;j411S)) = X;j + SjE(S4118;) — 8 = X + 57 — §7 = X;
which proves that {X;,j =0,1,2,...} is, in fact, a martingale.
9. The joint density of X(l),X(z),X(g),X(4) is

fX(1)7X(2),X(3),X(4)(y17 y27y37y4) =4l'=24

provided that 0 < y1 < y2 < y3 < y4 < 1. Thus, the joint density of X(z),X(g,) is

L pry2
ys 40

provided that 0 < y2 < y3 < 1. f U = X(9)/X(3) and V = X3), then solving for X,y and X3
gives X(9) = UV and X(3) =V so that the Jacobian of this transformation is

Oy2  Jy2

J:6u Bv:UU:
dys  ys 0 1
ou ov

By Theorem 1.2.1, the joint density of (U, V)’ is therefore given by
For (1, 0) = Fxmy Xy (00,0) - 1] = 24un(1 = v) - v = 24u(1 — v)

provided that 0 < v < 1 and 0 < v < 1. Notice that U and V are, in fact, independent with
fo(u) =2u, 0 < u < 1, and fi/(v) = 120%(1 —v), 0 < v < 1. Finally, we see that the density of
W =U?is

fw(w) = iP(W <w) = %P(U <+Vw) = 2\1/an(\/@) _ 2\1/17)

2w =1
dw
provided that 0 < w < 1. In other words, (X(2)/X(3))? € U(0,1) as required.



10. (a) Since X5 € Po(5), we find

10. (b) By adding and subtracting X2, we compute
Var(X5|X2 = 1) = Var(X5 — X9+ X2|X2 = 1) = Var(X5 — XQ‘XQ = 1) —|—Var(X2|X2 = 1)
= Var(X5 - X2) =3
using the fact that X5 — Xy € Po(3) and X5 are independent.

10. (c) By adding and subtracting X, we compute
COV(XQ, X4) = COV(XQ, X4 — Xo+ Xz) = COV(XQ, X4 — XQ) + COV(XQ, XQ) =0+ Val“(Xg)

using the fact that the increments X4 — X9 and X» are independent. Since X2 € Po(2) we know
Var(X2) = 2 so that
COV(XQ,X4) = Var(Xg) = 2.

10. (d) By adding and subtracting X9, we compute
E(X4|Xo =j) = BE(X4—Xo+Xo|Xo = j) = E(Xa—Xo|Xo = j) + E(X2|Xo = j) = BE(X4— X2)+j

where we have used the facts that F(Xy — X3|Xo = j) = E(Xy — X2) since Xy — X9 and X,
are independent, and E(X3|X2 = j) = j by “taking out what is known.” (See Theorems I1.2.1
and I1.2.2.) Since X4 — X5 € Po(2) we know E(X4 — X3) = 2 so that

E(XylXo=j)=2+j, j=01,2,....

11. (a) Let {X;,t > 0} denote the Poisson process with intensity 1 according to which Jessica buys
pairs of shoes (where ¢ measures weeks). The random number of shoes that Jessica buys in a year
is X59. Since X; € Po(t) for all ¢ by the Poisson process assumption, we conclude that E(X52) = 52.

11. (b) If we use the fact that a Poisson process resets at fixed times, then the probability that
she bought 3 pairs of shoes during the first week of February given that she bought 8 pairs during
the four weeks of February is

B o P(X1=3,X,=8) P(X;=3X,—-X;=5) P(X; =3)P(X4— X, =5)
P(Xy =3X1=8) = ]13(X4:8) B lP(X4=8)1 - lP(X4=8>1 ’

Since X; € Po(1), we find

1 _
P(Xy =3) = e Y
since X4 — X7 € Po(3), we find
35
P(X4— X, =5)= 56_3,
and since X, € Po(4), we find
48
P(X4=8)= ke 2
Thus, the required probability is
Le 1. %?6_3 8 35

P(X; =3|X,=8) =



