Stat 351 Fall 2008
Assignment \#9 Solutions

1. (a) By Definition I, we see that $X_{1}-\rho X_{2}$ is normally distributed with mean

$$
E\left(X_{1}-\rho X_{2}\right)=E\left(X_{1}\right)-\rho E\left(X_{2}\right)=0
$$

and variance

$$
\operatorname{var}\left(X_{1}-\rho X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\rho^{2} \operatorname{var}\left(X_{2}\right)-2 \rho \operatorname{cov}\left(X_{1}, X_{2}\right)=1+\rho^{2}-2 \rho^{2}=1-\rho^{2} .
$$

That is, $X_{1}-\rho X_{2}=Y$ where $Y \in N\left(0,1-\rho^{2}\right)$. Hence, $Y=\sqrt{1-\rho^{2}} Z$ where $Z \in N(0,1)$. In other words, there exists a $Z \in N(0,1)$ such that

$$
X_{1}-\rho X_{2}=\sqrt{1-\rho^{2}} Z .
$$

1. (b) Since $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ is MVN, and since

$$
Z=\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}},
$$

we conclude that $\left(Z, X_{2}\right)^{\prime}$ is also a MVN. Hence, we know from Theorem V.7. 1 that the components of a MVN are independent if and only if they are uncorrelated. We find

$$
\begin{aligned}
\operatorname{cov}\left(Z, X_{2}\right)=\operatorname{cov}\left(\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}}, X_{2}\right) & =\frac{1}{\sqrt{1-\rho^{2}}} \operatorname{cov}\left(X_{1}, X_{2}\right)-\frac{\rho}{\sqrt{1-\rho^{2}}} \operatorname{var}\left(X_{2}\right) \\
& =\frac{\rho}{\sqrt{1-\rho^{2}}}-\frac{\rho}{\sqrt{1-\rho^{2}}} \\
& =0
\end{aligned}
$$

which verifies that Z and X_{2} are, in fact, independent.
Exercise 5.3, page 129: Let

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem V.3.1, \mathbf{Y} is MVN with mean

$$
B \overline{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
7 / 2 & 1 / 2 & -1 \\
1 / 2 & 1 / 2 & 0 \\
-1 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right) .
$$

Hence, we see that $\mathbf{Y} \in \mathcal{N}(\overline{0}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right)
$$

We now compute $\operatorname{det}[\boldsymbol{\Sigma}]=10-9=1$ and

$$
\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & -3 \\
0 & -3 & 2
\end{array}\right)
$$

If we write $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\prime}$, then

$$
\mathbf{y}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}=y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}
$$

and so the density of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\mathbf{y})=\left(\frac{1}{2 \pi}\right)^{3 / 2} \exp \left\{-\frac{1}{2}\left(y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}\right)\right\} .
$$

Note that this problem could also be solved by observing that $Y_{1} \in \mathcal{N}(0,1)$ and

$$
\left(Y_{2}, Y_{3}\right)^{\prime} \in \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)\right)
$$

are independent so that $f_{\mathbf{Y}}(\mathbf{y})=f_{Y_{1}}\left(y_{1}\right) \cdot f_{Y_{2}, Y_{3}}\left(y_{2}, y_{3}\right)$.
Problem \#27, page 147: In order to determine the values of a and b for which $\mathbb{E}(U-a-b V)^{2}$ is a minimum, we must minimize the function $g(a, b)=\mathbb{E}(U-a-b V)^{2}$. If $U=X_{1}+X_{2}+X_{3}$ and $V=X_{1}+2 X_{2}+3 X_{3}$, then
$U-a-b V=X_{1}+X_{2}+X_{3}-a-b\left(X_{1}+2 X_{2}+3 X_{3}\right)=(1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a$.
Notice that $\mathbb{E}(U-a-b V)^{2}=\operatorname{var}(U-a-b V)+[\mathbb{E}(U-a-b V)]^{2}$. We now compute

$$
\begin{aligned}
\operatorname{var}(U-a-b V) & =\operatorname{var}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) \\
& =(1-b)^{2} \operatorname{var}\left(X_{1}\right)+(1-2 b)^{2} \operatorname{var}\left(X_{2}\right)+(1-3 b)^{2} \operatorname{var}\left(X_{3}\right) \\
& =(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}
\end{aligned}
$$

using the fact that X_{1}, X_{2}, X_{3} are i.i.d. $\mathcal{N}(1,1)$. Furthermore,

$$
\begin{aligned}
\mathbb{E}(U-a-b V)=\mathbb{E}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) & =(1-b)+(1-2 b)+(1-3 b)-a \\
& =3-6 b-a
\end{aligned}
$$

which implies that

$$
g(a, b)=(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}+[3-6 b-a]^{2}=12-48 b+50 b^{2}-6 a+12 a b+a^{2} .
$$

To minimize g, we begin by finding the critical points. That is,

$$
\frac{\partial}{\partial a} g(a, b)=-6+12 b+2 a=0
$$

implies $a+6 b=3$, and

$$
\frac{\partial}{\partial b} g(a, b)=-48+100 b+12 a=0
$$

implies $25 b+3 a=12$. Solving the second equation for b yields

$$
25 b=12-3 a=12-3(3-6 b) \quad \text { and so } \quad b=\frac{3}{7} .
$$

Substituting in gives

$$
a=3-6 b=3-\frac{18}{7}=\frac{3}{7} .
$$

Since

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b)=2>0
$$

and

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b) \cdot \frac{\partial^{2}}{\partial b^{2}} g(a, b)-\left(\frac{\partial^{2}}{\partial a \partial b} g(a, b)\right)^{2}=2 \cdot 100-12^{2}=56>0
$$

we conclude by the second derivative test that $a=3 / 7, b=3 / 7$ is indeed the minimum.
3. From Midterm \#2, we find that the orthogonal decompostion of $\boldsymbol{\Lambda}$ is given by $\boldsymbol{\Lambda}=C D C^{\prime}$ where

$$
C=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \quad \text { and } \quad D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

Hence, if we let $\mathbf{Y}=C^{\prime} \mathbf{X}$, then $\mathbf{Y} \in \mathcal{N}(\mathbf{0}, D)$ so that

$$
Q(\mathbf{x})=\mathbf{x}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{x}=\mathbf{y}^{\prime} D^{-1} \mathbf{y}=Q(\mathbf{y})
$$

Setting $Q(\mathbf{y})=1$ gives

$$
\frac{y_{1}^{2}}{\lambda_{1}}+\frac{y_{2}^{2}}{\lambda_{2}}=y_{1}^{2}+\frac{y_{2}^{2}}{2}=1
$$

This describes an ellipse centred at the origin passing through the points $(0, \sqrt{2})^{\prime},(0,-\sqrt{2})^{\prime},(1,0)^{\prime}$, and $(-1,0)^{\prime}$. We now notice that we can write C as

$$
C=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right] .
$$

This matrix describes a counterclockwise rotation by $\pi / 3=60^{\circ}$. Thus,

$$
Q(\mathbf{x})=\mathbf{x}^{\prime} \boldsymbol{\Lambda}^{-1} \mathbf{x}=\frac{5}{8} x_{1}^{2}+\frac{\sqrt{3}}{4} x_{1} x_{2}+\frac{7}{8} x_{2}^{2}=1
$$

describes the same ellipse rotated by $\pi / 3$. In other words, it is an ellipse passing through the points

$$
\begin{gathered}
C\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]=\left(-\frac{\sqrt{3}}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\prime}, \quad C\left[\begin{array}{c}
0 \\
-\sqrt{2}
\end{array}\right]=\left(\frac{\sqrt{3}}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)^{\prime}, \\
C\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{\prime}, \quad C\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)^{\prime} .
\end{gathered}
$$

4. (a) If $X \in U(0,1)$, then the distribution function of X is

$$
F_{X}(x)= \begin{cases}0, & \text { if } x \leq 0 \\ x, & \text { if } 0<x<1 \\ 1, & \text { if } x \geq 1\end{cases}
$$

Therefore, if $Y=-\log X$, then the distribution function of Y is
$F_{Y}(y)=P\{Y \leq y\}=P\{-\log X \leq y\}=P\left\{X \geq e^{-y}\right\}=1-P\left\{X \leq e^{-y}\right\}=1-F_{X}\left(e^{-y}\right)=1-e^{-y}$ provided that $y>0$. We recognize this as the distribution function of an $\operatorname{Exp}(1)$ random variable. That is, $Y \in \operatorname{Exp}(1)$.
4. (b) If $Y_{i}=-\log X_{i}$ for $i=1, \ldots, n$, then by part (a), we know that Y_{1}, \ldots, Y_{n} are i.i.d. $\operatorname{Exp}(1)$ random variables. Furthermore,

$$
\prod_{i=1}^{n} X_{i}=\exp \left\{\log \prod_{i=1}^{n} X_{i}\right\}=\exp \left\{\sum_{i=1}^{n} \log X_{i}\right\}=\exp \left\{-\sum_{i=1}^{n} Y_{i}\right\}
$$

If we now let

$$
Z=\sum_{i=1}^{n} Y_{i},
$$

then using moment generating functions it follows that $Z \in \Gamma(n, 1)$ (or it follows from Problem \#20 in Chapter I). Finally, if we let

$$
W=\prod_{i=1}^{n} X_{i}=e^{-Z}
$$

then the distribution function of W is

$$
F_{W}(w)=P\{W \leq w\}=P\left\{e^{-Z} \leq w\right\}=P\{Z \geq-\log w\}=1-P\{Z \leq-\log w\}=1-F_{Z}(-\log w) .
$$

Hence, the density function of W is

$$
f_{W}(w)=\frac{1}{w} f_{Z}(-\log w)=\frac{1}{w} \cdot \frac{1}{\Gamma(n)}(-\log w)^{n-1} e^{\log w}=\frac{(-\log w)^{n-1}}{\Gamma(n)}, \quad 0<w<1
$$

5. (a) Since $S_{n+1}=S_{n}+Y_{n+1}$ we see that

$$
\operatorname{cov}\left(S_{n}, S_{n+1}\right)=\operatorname{cov}\left(S_{n}, S_{n}+Y_{n+1}\right)=\operatorname{cov}\left(S_{n}, S_{n}\right)+\operatorname{cov}\left(S_{n}, Y_{n+1}\right)=\operatorname{var}\left(S_{n}\right)+0
$$

using the fact that Y_{n+1} is independent of S_{n}. Furthermore, since $S_{n}=Y_{1}+\cdots+Y_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent, we find

$$
\operatorname{var}\left(S_{n}\right)=\operatorname{var}\left(Y_{1}+\cdots+Y_{n}\right)=\operatorname{var}\left(Y_{1}\right)+\operatorname{var}\left(Y_{2}\right)+\cdots+\operatorname{var}\left(Y_{n}\right)=1+1+\cdots+1=n
$$

Thus, we conclude $\operatorname{cov}\left(S_{n}, S_{n+1}\right)=n$.
5. (b) Without loss of generality, suppose that $x \geq 0$. In order for the simple random walk to be at position $2 x$ at time $2 n$, it must be the case that $2 x$ steps "to the right" were taken to reach position $2 x$, and then of the remaining $2 n-2 x$ steps, $n-x$ were taken "to the right" and $n-x$
were taken "to the left." In other words, there must have been $2 x+n-x=n+x$ steps "to the right" and $n-x$ steps "to the left." There are $\binom{2 n}{n+x}$ ways to do this, so that the probability is given by

$$
P\left(S_{2 n}=2 x\right)=\binom{2 n}{n+x} 2^{-2 n}, \quad x=-n,-n+1, \ldots, n-1, n .
$$

(Note that, by symmetry, the probability is the same if x is replaced by $-x$.)
6. (a) The probability that fewer than two calls come in the first hour is $P\left(T_{2}>1\right)$. However, $\left\{T_{2}>1\right\}=\left\{X_{1}<2\right\}$ so it is equivalent to calculate either $P\left(T_{2}>1\right)$ or $P\left(X_{1}<2\right)$. Since $X_{1} \in \operatorname{Po}(4)$, we find

$$
P\left(X_{1}<2\right)=P\left(X_{1}=0\right)+P\left(X_{1}=1\right)=\frac{4^{0}}{0!} e^{-4}+\frac{4^{1}}{1!} e^{-4}=5 e^{-4}
$$

On the other hand, since $T_{2} \in \Gamma\left(2, \frac{1}{4}\right)$, we compute

$$
P\left(T_{2}>1\right)=\int_{1}^{\infty} \frac{1}{\Gamma(2)} 4^{2} x e^{-4 x} d x=\int_{1}^{\infty} 16 x e^{-4 x} d x=5 e^{-4} .
$$

Note that integration by parts with $u=x$ and $d v=16 e^{-4 x}$ gives

$$
\int 16 x e^{-4 x} d x=-4 x e^{-4 x}+\int 4 e^{-4 x} d x=-4 x e^{-4 x}-e^{-4 x}
$$

6. (b) The probability that at least two calls arrive in the second hour given that six calls arrive in the first hour is

$$
\begin{aligned}
P\left(X_{2} \geq 8 \mid X_{1}=6\right) & =\frac{P\left(X_{2} \geq 8, X_{1}=6\right)}{P\left(X_{1}=6\right)}=\frac{P\left(X_{2}-X_{1} \geq 2, X_{1}=6\right)}{P\left(X_{1}=6\right)} \\
& =\frac{P\left(X_{2}-X_{1} \geq 2\right) P\left(X_{1}=6\right)}{P\left(X_{1}=6\right)}=P\left(X_{2}-X_{1} \geq 2\right) .
\end{aligned}
$$

Since $X_{2}-X_{1} \in \operatorname{Po}(4)$, we conclude that

$$
P\left(X_{2}-X_{1} \geq 2\right)=1-P\left(X_{2}-X_{1}<2\right)=1-5 e^{-4}
$$

using our result in 6. (a).
6. (c) Note that T_{15} is the time that the fifteenth call arrives. Since $T_{15} \in \Gamma\left(15, \frac{1}{4}\right)$, we conclude

$$
E\left(T_{15}\right)=15 \cdot \frac{1}{4}=\frac{15}{4} .
$$

Alternatively, since $T_{15}=\tau_{1}+\tau_{2}+\cdots+\tau_{15}$ with $\tau_{i} \in \operatorname{Exp}\left(\frac{1}{4}\right)$, we conclude

$$
E\left(T_{15}\right)=E\left(\tau_{1}\right)+E\left(\tau_{2}\right)+\cdots+E\left(\tau_{15}\right)=\frac{1}{4}+\frac{1}{4}+\cdots+\frac{1}{4}=\frac{15}{4} .
$$

6. (d) The probability that exactly 5 calls arrive in the first hour given that eight calls arrive in the first two hours is given by

$$
\begin{aligned}
P\left(X_{1}=5 \mid X_{2}=8\right)=\frac{P\left(X_{1}=5, X_{2}=8\right)}{P\left(X_{2}=8\right)} & =\frac{P\left(X_{2}-X_{1}=3, X_{1}=5\right)}{P\left(X_{2}=8\right)} \\
& =\frac{P\left(X_{2}-X_{1}=3\right) P\left(X_{1}=5\right)}{P\left(X_{2}=8\right)} .
\end{aligned}
$$

Since $X_{2}-X_{1} \in \operatorname{Po}(4)$,

$$
P\left(X_{2}-X_{1}=3\right)=\frac{4^{3}}{3!} e^{-4},
$$

since $X_{1} \in \operatorname{Po}(4)$,

$$
P\left(X_{1}=5\right)=\frac{4^{5}}{5!} e^{-4}
$$

and since $X_{2} \in \operatorname{Po}(8)$,

$$
P\left(X_{2}=8\right)=\frac{8^{8}}{8!} e^{-8}
$$

we can combine everything to conclude

$$
P\left(X_{1}=5 \mid X_{2}=8\right)=\frac{\frac{4^{3}}{3!} e^{-4} \frac{4^{5}}{5!} e^{-4}}{\frac{8!}{8!} e^{-8}}=\frac{8!}{3!5!2^{8}}=\frac{7}{32} .
$$

