Stat 351 Fall 2008
Assignment #6 Solutions

1. We find
PX<Y<Z)= /// f(z,y,2)dx dydz.

{z<y<z}

Since f(x,y,z) = e *7¥7% for 0 < z,y, 2z < 00, the six equivalent iterated integrals for this expres-
sion are

oo rzorY oo oo Y oo rz oz
/ / / e PV Fdaedydz = / / / e PV *dardz dy = / / / e TV *dydr dz
0 0 Jo 0 Yy 0 0 0 Jzx
o0 oo z o0 Yy oo oo o0 o0
= / / / e TV *dydzdx = / / / e TV dzdr dy = / / / e TV ?dz dy dx.
0 T T 0 0 Y 0 T Yy

All of them integrate to 1/6; for example, the first of these iterated integrals is

0o z Yy oo z Yy
/ / / e TV A dx dy dz :/ / eyz/ e “dxdydz
o Jo Jo o Jo 0
:/ / eV F1l—-eY)dydz
o Jo
:/ e_z/ (e7¥ —e ) dydz
0 0
o 1 1
e * [(1 —e 7)) — < - 6_2Z>:| dz
2 2
1

as expected.

Problem #3, page 115: If 0 < y < 1/2, then

1-y 1—y
fr(y) = / IX )X (Y5 2) dz = / 2dz = 2(1 - 2y).
y y

On the other hand, if 1/2 < y <1, then

y y
fy(y) :/ fX )X (21— y) dz:/ 2dz =2(2y —1).
1—y 1-y
Problem #6, page 115: Since E[F (X)) — F(X(1))] = E[F(X(,))] — E[F(X(1))], we compute
each of E[F(X(y))] and E[F(X))] separately. Therefore, by definition,

[e.e]

B[F(X ()] = / F(yn) ey (4n) i

—00

From Theorem IV.1.2, we know that fx (yn) = n[Fx, (yn)]" L f (yn) so that

/Oo F(y")fx(n) (Yn) dyn = /oo n[F(yn)]" f(yn) dyn.

—00 —0o0



Making the substitution u = F(y,) so that du = F'(y,)dyn = f(yn)dyn gives

n
n+1

00 1
| nlF @ o) dy = [ du =
—00 0
Note that since F' is a distribution, our new limits of integration are F'(—oco) = 0 and F'(c0) = 1.
As for E[F(X(1))], using Theorem IV.1.2, we compute

o0

BIF (X)) = [ " P fx, (1) din = | Flunlt— Faa) ) din.

—0o0
Making the same substitution as above gives
1

0o 1
/ F(y)n[l — F(y)]" " f(y1) dyr = /0 nu(l —u)" L du = n/ (1—v)" tdv=1- i

—00 0 n+1

Finally, we combine our two results to conclude that

n n n—1
EIF(Xw) = F(Xw)] = n+l [1_n+1] Tarl

Problem #9, page 116: (a): If X; and X» are independent Exp(a) random variables, then by
Theorem IV.2.1, the joint density of (X(), X(2)) is given by

P o () = Zexp (—4F2) | for 0 <y <y < 00,
(1) 2@ 2 0, otherwise.

Suppose that U = X1y and let V = X(3) — X(1). Solving for X(1) and X () gives
X(l) =U and X(Q) =U+V.

The Jacobian of this transformation is given by

oyi 0
S| | ool
S |owe aw| |1 1] 7

ou ov

Therefore, by Theorem 1.2.1, the density of (U, V) is given by

2 u+u+v 2 2u+v 2 _ 1 _
fU7V(u’fu) = fX(l),X(Q) (U,U—F’U)|J| = Eexp <—a> = 5 exp <— a > = ge QU/G,Ee v/a

provided that v > 0 and v > 0. The marginal density of U is

a a a

fu(u) = / fov(u,v)dv = / 26_2“/“ . 1e_”/a dv = 26_2“/‘1
—00 0

for u > 0. We recognize that this is the density of an exponential random variable with parameter
a/2; that is, U = X(qy € Exp(a/2). The marginal density of V' is

fv(’U) = / fU,V(u? ’U) du — / 76—21&/@ . 76_1}/& du — 76—1)/(1
o 0 a a a



for v > 0. We recognize that this is the density of an exponential random variable with parameter
a; that is, V' = X () — X(1) € Exp(a). Since we can express fy v (u,v) = fu(u) - fv(v) we conclude
that U and V' are independent; in other words, X (1) and X(9) — X(1) are independent.

(b): To compute E(X(2)|X(1) = y), we can use properties of conditional expectation (Theo-
rem 11.2.2):

E(X@)|Xa) =y)=EX@g —Xq) +X0lXa) =y)
= E(X@) — X)Xy =) + E(X)| Xy =v)
= E(X@) — Xq)) +y

where the first expression after the third equality follows since X(3) — X(y) is independent of Xy
and the second expression follows since X1 is “known” when conditioned on the value Xy = y.

As for E(X(1)|X(9) = ), we need to compute this by definition of conditional expectation. That
is,

fX )X (W1, @) Ze /e gmv/a 1 e w/e
Fxixa=n) = fxo@) 2 —eway.ew/e al-ewla
provided 0 < y; < x. This then gives
o0 Ty e—uila 1 v
E(X(1)|X(2) =)= /OO fX(l)IX(Q):x(yl)dyl = 0 o mdyl = a(l—e_l’/“)/o y1€ v/a dy.

Integrating by parts gives
x
/ yre Ny, = a® — a’e ™ — qpe /0,
0

Therefore,

a? — a?e%/% — gre

a(l — e~z/a)

—z/a —z/a

xre xr

E(X(l)‘X(Z) = .73) = B 1— e—x/a =a- exfa _1°

=a

Problem #10, page 116: Let X;, X5, and X3 are independent, identically distributed U (0, 1)
random variables. Notice that if z > 1/2, then since X 3) > X(1) we conclude

P(X(g) > % ’X(l) = 33) =1.
On the other hand, suppose that 0 < x < 1/2. By equation (3.10) on page 114,

IX )X (Y1, y3) = 6(y3 — y1)

provided 0 < y1 < y3 < 1. Therefore, we find

1
[ It (ovam) das
_Jiy2

fX(1) ()

P(X@) > 5| Xa) = =)



For the numerator we calculate

1 1 1
9 3

/ Ix )X (s (@5 y3) dys = / 6(ys — ) dys = (3y3 — 6rys)| = 7 3=~ 4a).

1/2 1/2 1/2

As for the denominator, from Remark 3.1 on page 114, we find
fxoy (@) = 3(1 = z)?
provided 0 < xz < 1. Putting these pieces together, we conclude

3(3 — 4z 3—Adx
P(X@) > 3| Xy =2) = {';El_x)a) = 4((1_@)2'

That is,
Bdo) o<z <1/2
P(Xa > L Xy =) = 4 40-2)* ST )
| o 2! . ) {17 if x> 1/2.

Problem #12, page 116: Since Xi,...,X,,Y7,...,Y, are i.i.d. U(0,a) random variables, we
conclude from Theorem IV.1.2 that X(,) and Y{,) are independent and identically distributed
B(1,n) random variables. In order to simplify matters we let X = Xy and Y = Y, so that X
and Y have common density function

n

_ n—1
f(z) = pril 0<z<a
and common distribution function
0, x<0,
F(x) = i—:, 0<z<a,
1, z>1.

If we now let S = min{X,Y} and 7" = max{X,Y}, then Theorem IV.2.1 implies that the joint
density of (S5,T) is

n n 2n?
fS7T(S,t) =2 ainsn_l . aintn_l = aTnsn_ltn_l, O<s<t<a.
The next step is to let U = % and V = S so that S =V and T'= UV. We find the Jacobian of
this transformation is

& % 0 1
J = ou 811‘ _ _ _
ot ot (T
ou Ov
The density of (U, V') is therefore given by
2n? -1 2% 1 ot
fov(u,v) = for(v,uv) - |J| = aTnv" (uwv)"™ " v = aTnu" v"

provided that 1 < u < 0o, 0 <v < § < a. The marginal density for U is therefore given by

2n

0 N2 a/u v=a/u
n _ _ n _ n _1a _
fu(u) = fov(u,v)dv = —-u" ! vVl de = vl = — " = (D)
) a’n an an uzn
— 0 0 v=0



provided that 1 < u < oco. Since we are interested in

max{X(n), Yn) }

Zn—nlog< >—n10gU

we can now use techniques from Chapter I to find the density of Z,. Let Z = Z,, = nlogU.
Therefore, Fz(z) = P(Z < z) = P(U < ¢*/™) and so

1 1
fz(z) = Eez/"fU(ez/") = ﬁez/” . n(ez/n)*(nﬂ) — 7

provided that 0 < z < oo. Hence we conclude that Z,, € Exp(1).
Problem #17, page 117: The key observation is that

Using the fact from Stat 251 that the sum of n independent and identically distributed Exp(a)
random variables has a gamma distribution with parameters a and n, we conclude that

n
Z X(Z) S F(a, n)
i=1
Problem #7, page 115: By Theorem 1V.3.1, the joint density
fX(1)7X(2),X(3),X(4) (yl; Y2,Y3, y4) =24

provided that 0 < y; < y2 < y3 < y4 < 1. Therefore,
Y3 Y2 Y3 Y2
IX 3y X () (Y3, Y1) = / FX (1),X (29, X 3, X () (Y1, Y2, Y3, Ya) dy1 dyo = / / 24 dyy dy;
o Jo o Jo

Y3
- / 2y, dys
0

= 12y3

provided that 0 < y3 < y4 < 1. We then see that

1/2 rl-y
P(X(5) + Xy < 1) = /0 [ i ) dzdy
Yy

where fx ., x. (y,2) = 12y for 0 < y < z < 1. This then gives

1/2

1/2 pl-y 1/2 1
P(X@) + Xy <1) = /0 / 12y° dz dy = /0 12y°(1 - 2y)dy = (4" - 6y")| =2
Yy 0

Problem #8, page 115: By definition,
e = cov(X (1), X(3))
e \/Var(X(l)) . V&I‘(X(g))

Since X1, X2, X3 are iid Exp(1) random variables, we conclude from Theorem IV.2.1 that

Fxa) X (y1,y3) = 6(e" —e e Ve



provided 0 < y; < y3 < co. We also conclude from Theorem IV.1.2 (or, equivalently, page 103)
that

Fxo(y1) = 3(e7)%e™¥ = 37201
provided that 0 < y; < oo, and that
Fx (ys) = 3(1 — %)% ¥
provided that 0 < y3 < co. Since we recognize X1y € Exp(1/3) we conclude immediately that
1)
E(X(1)) = 1/3 and var(X(;)) = 1/9. Next we compute

E(X@3)) = / 3ys(1 — e ¥3)2e7¥8 dys = / 3yse Y3 dys —/ 6yze 23 dys +/ 3yze~3Y3 dys
0 0

0 0
1\? 1\?
1
and
B(X() = / y3(1 — e )%™ dys = / Byze” ¥ dys — / Gyze™ s dys + / 3yze” > dys
0 0 0 0
1\? 1\?
=3I'(3)—6 (2) I(3)+3 <3) I'(3)
_8
187
Therefore,

2
(X = EOG) - (B0 = 2 (1) 2 48

Now we compute

E(X0)X@) = / / IX X3 (Y1, Y3) dys dyr = / / 6y1ys(e™ ¥ —e ¥ )e ¥ e ¥ dys dy
—00 J —00 0 Y1

o0 o0
= 6/ y1e‘y1/ ys(e ¥t —e %)™ dyz dy;.
0

1

o0 o0 o0 o0
=6 / yre 2V / yze 3 dyz dy; — 6 / yre” / yse 2Y3 dyz dy
0 0

Y1 Y1

oo » B B oo B 1 L 1 .
B 6/ yre” Y (yre ¥ e V) dyr — 6/ yre U { Sye 4 e ) dy
v 0

o 9 oo
=3 / yie Wy + 3 / yre” 1 dy,
0

2
o (1) 2o (1)
13
T8

so that



Finally, we put everything together so that
COV(X(l),X(g)) 1/9 2

PX 1) X)) = = . =
\/Var(X(l)) -var(X(s)) 1/3-7/6 7

Problem #13, page 116: (a) If Y1 = X(;) and Yy = X(3) — X(4—1), k¥ = 2,...,n, then solving
for X(1)7 X(Q), cee 7X(n) giVGS

Xyy=Y1 and Xpy=Yi+ - +Y, k=2,...,n

The Jacobian of this transformation is given by

Or1 On 0y 1 000 00
dy1 Oys  Oya| |1 1 0 0 0 0
Oxg  Oxo 0o 1 1 10 0 0

J = (973/1 87y2 Tyn -1 111 -+ 0 0f=1.
ox, Oxp, oxy, 1111 -+ 1
oy Oys  Oyn 1111 --- 1

(Since the matrix is lower triangular, the determinant is simply the product of the diagonal entries.)
By Theorem 1.2.1, we have

I v (Y92, Yn) = Xy X (U101 F Y2, Y1 H Y2+ Yn).

Since X1,..., X, are Exp(a) random variables so that they have common density f(z) = %e‘m/ @

x > 0, we find from Theorem IV.3.1 that the joint density of the order statistic is given by

)

n n

1 _ n! 1 —
me ..... X(n)($17---axn):n!Hf(xi):n!ng xl/azanexp{—a;xi}
1=

i=1 =1

provided 0 < 1 < x3 < --- < xz,. Hence, we conclude

i v (Y y2, - yn) = IX1)0 X ) (YL, + Y2, y1+ Y2+ +Un

n! 1
= eXD {—a(nyl +(n—=1Dy2+- -+ 2yn_1 +?/n)}

/e, (M=) —mevuefa 2 —2pei/a L~y
a a a a

provided that 0 < y1 < y1 +y2 <--- <y1+---+yp, or equivalently, y1 >0, y2 >0,...,y, > 0. In
other words, the density function of Y}, is

fYk(yk)_WeXp{_W}a yk>0a

so that

a
Y € Bxp (m) |

(b) Note that

Vit Yot o+ Yo=Xoy+ (X = X)) +- 4 (X = X)) = X



as in (a). Therefore, since Y}, € Exp(ﬁ), we conclude

a a a 1
E(X() =EM) +E(Y2) + - + E(Y;) = 4 P AR o
nalolondlee ntl-mn il
and
a? a2 a2 ) n 1
var(X(k)) = var(Y7)+var(Ye)+- - -+var(Yy) = mrio 1)2+(n g +- - .+m —a § :ﬁ

Problem #14, page 116: (a) This is identical to Problem #13(a). Hence, Y} € Exp(nﬁik) for
k=1,2,...,n.

(b) As in Problem #13(b), we see that Y1 + Y5 +--- +Y,, = X(,,) and so

"1 1 1 1
E(X(n))zzgzl+§+§+---+ﬁ.
k=1

However, we can also find E(X(,,)) another way. By Theorem IV.1.2, we know that
fx( (@) =n(1— e T e 0<x < oo

and so

—00 0

Equating these two expressions for E(X(,)) gives

/OO (1—e )" lem®d L
nr(l—e e T = e e R
0 2 3 n

as required.
Problem #15, page 117: As in Problem #13(b) we see that

Xp=Y1+Yo+ - +Y, k=12...,n,

where Y; € Exp(; +117j) with Y7,...,Y,, independent. This implies that

Zn:nX(1)+(n—1)X(2)+"-+2X(n,1)+X(n)
=nYi+n-1)Y1+Y2) +--+2Vi+Yo+ -+ Y )+ (V1 + Yo+ 4+ V)
=Y1i(1+2+-+n)+Yo(1+2+--+n—1)+ -+ Y, 1(1+2)+ Y,



Therefore,

EZ)=04+2+---4+n)EY)+1+2+---4+n—-1EY2)+ -+ (1+2)E(Y,-1) + E(Ya)

1
=(14+24+--- —_ 14+24... 1) — ... 14+ 92).
24 dn) Doy (24t =) o b (D) T
nn+1) 1 (n—1n 1 2(3) 1
= - . R S |
2 n 2 n—1+ + 2 2+
_n+l om0 02
2 2 2 2
k1
B 2
k=1
nn+1) n
T 1 T2
n(n + 3)
==
Furthermore,

var(Z,) = (14+2+---+n)?var(Y) + (1 +2+---+n—1)?var(Yy) 4+ --- + (1 + 2)? var(Y;,_1) + var(¥},)

(A () e ()

k
(n+ 1)(n+2)(2n+3)] 1

Problem #20, page 118: Since X, Xo, ... arei.i.d. U(0,1) random variables, they have common
distribution function

0, =<0,
Flz)=<z, 0<z<]l,
1, =z>1.

)

Thus, if we let X(,,) = max{Xj,..., X, }, then by Theorem IV.1.1, the distribution function of X,
is

0, y=<0,
FX(n>(y): yn7 O<y< ]-7
1, y>1
Now let V' = max{X;,..., Xy} where N € Po(\) is independent of X1, Xs,.... If we condition on

the value of N, then there are two cases to consider. Either N = 0 which happens with probability
P(N =0) =e and so

+1



or N > 1 in which case the distribution function of V|N =n, n =1,2,3,..., is given by

0, y<0,
Fyin=n(y) = {¥", 0<y<]1,
1, y=>1

Thus, the density function of VIN =n, n=1,2,3,..., is given by

fvin=n(y) = ny™ 1, 0<y<l1.

Finally, we conclude using the law of total probability that the (unconditional) density of V' (in the
case N > 1) is

Ate™r eTA SN (Ay)"

fvly) = vaw:n(y)P(N =n)= Znyn_l .
n=1 n=1

nl oy — (n—1)!
VR SN Y
— %
y yz (n—1)!
= e e
Ae M1-9)

To summarize, we have
e P(V=0)=e? and
o fr(v) =X M) 0 <v < 1.

Notice that
1 1
PV =0) +/ fv(w)dv = e —|—/ Ae Mgy — e pe et —1) =1
0 0

as expected. Note that V is an example of a random variable which is neither continuous nor
discrete. The expected value of V' is given by

1 1 1
E(V)=0-P(V=0)+ /0 vfy(v)dv = /0 e M=) gy, — e_)‘/o e dv

e~ A

= — uedu




