Stat 351 Fall 2008
Assignment, #3 Solutions

Problem #3, page 27: Suppose that T' € t(n) so that the density of T is given by
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Let Y = T?2. If y > 0, then the distribution function of Y is given by
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Taking derivatives with respect to y gives
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In order to write this last line, we have used the fact that I'(1/2) = /7. Notice that this is the
density of an F'(1,n) random variable. (See page 261.)
Problem #5, page 27: Suppose that X € C(0,1) so that the density of X is given by
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Let Y = X2. If y > 0, then the distribution function of Y is given by
) VY
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Taking derivatives with respect to y gives
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Notice that this is the density of an F'(1,1) random variable. (See page 261 and recall that I'(1) = 1,
'(1/2) = /7.)
Problem #6, page 27: If X € 3(1,1), then the density function of X is
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(We have used the fact that I'(2) = I'(1) = 1.) Since the density of X is also that of a uniform
random variable, we conclude X € U(0,1). Therefore, 3(1,1) = U(0,1).

Problem #89, page 27: Suppose that X € N(0,1) and Y € x?(n) are independent random
variables. Let U = —2— and V = v/ Y/n so that solving for X and Y gives

VY/n

X=UV and Y =nVZ

The Jacobian of this transformation is given by
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The density of (U, V') is therefore given by
fov(u,v) = fxy(uv,nv?) - |J| = 2n0® fx (w) fy (nv?)
using the assumed independence of X and Y. Substituting in the corresponding densities gives
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provided that —oo < u < 00, 0 < v < oo. The marginal density of U is
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Making the substitution z = v?(u? 4+ n)/2 so that dz = v(u? + n)dv gives

n/2 oo n/2 )
n ne—v?(ur+n)/2 g _ n 2 1/2n/22n/21/2/ n/2-1/2,~z 4
2”/2—1/2\/7?F(n/2)/(1 v'e v 20/2=172 /7T (n)2) (u” +n) ; z e z
n/2

- m&ﬂ +n) Y22 (/2 4 1)2)
n"/2T(n
r(zH) 1

T VAL (3) (14 )2

provided —oo < u < oo. We recognize that this is the density of a t(n) random variable (see page
261), and so we conclude that U = —3— € t(n).
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Problem #10, page 28: Suppose that X € x?(m) and Y € x?(n) are independent random

variables. Let U = );/% and V = Y/n so that solving for X and Y gives

X =mUV and Y =nV.

The Jacobian of this transformation is given by
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The density of (U,V) is therefore given by
fov(u,v) = fxy(muv,nv) - |J| = mnov fx(muv) fy (nv)

using the assumed independence of X and Y. Substituting in the corresponding densities gives
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provided that 0 < u < 00, 0 < v < oco. The marginal density of U is
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Making the substitution z = v(mu + n)/2 so that dz = (mu + n)/2dv gives
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provided 0 < u < oo. We recognize that this is the density of a F/(m,n) random variable (see page

261), and so we conclude that U = )é/% € F(m,n).

Problem #11, page 28: If X € Exp(a), then a quick calculation shows that % € Exp(2).

However, comparing the exponential and chi-square densities (see page 260), we see that Exp(2) =

x2(2). Similarly, 2Y/a € Exp(2) = x*(2). Thus, using the result of Problem #10, we conclude that
X  2X/a

Y  2Y/a

€ F(2,2).

Problem #23, page 29: Suppose that X and Y have joint density

T

Ixy(z,y) = {(1+x)2(1+xy)2’ for z,y > 0,

0, otherwise.
Let U = X and V = XY so that solving for X and Y gives

X=U and Y =V/U.



The Jacobian of this transformation is given by

9z Oz

J= ou 81}‘ . 1 0 B 1

T oy oyl |—v/u? 1ju|l T w

% By v/ut 1/u|  w
The density of (U, V) is therefore given by
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provided that 0 < u < 00, 0 < v < oco. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,
fuv(u,v) = fu(u) - fv(v)
where
1

fu(u) = e foru>0, and fy(v)= ATo2 for v > 0.

Notice that both U and V' have the same distribution, namely F'(2,2). (See page 261.)

Problem #24, page 29: Suppose that X and Y have joint density
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fxy (@, y) = {(1+ac+y)3 for z,y > 0,

0, otherwise.

(a) Let U=X+Y and V = X{Y so that solving for X and Y gives
X=UV and Y=U-UV.

The Jacobian of this transformation is given by
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The density of (U, V) is therefore given by
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provided that 0 < u < 0o, 0 < v < 1. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that

foy (u,v) = fu(u) - fv(v)

where

fU(u):(lj_uu)3 foru>0, and fy(v)=1for0<wv<l

Therefore, the density of X + Y is
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(b) Let U = X — Y and V = X, so that solving for X and Y gives
X=V and Y=V -U.

The Jacobian of this transformation is given by
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The density of (U, V) is therefore given by
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u,v) = v,v —u)- |J| = 1=
LVAS YA (1+v+v—u) (1+2v —u)3’

provided that v > u and v > 0 (i.e.,, v > max{0,u}), and —oc0 < u < oo. If u > 0, then
max{u,0} = u, and so we calculate
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If u <0, then max{u,0} = 0, and so we calculate
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Therefore, the density of X — Y is
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Problem #25, page 30: Suppose that U = X?Y and let V = X. Solving for X and Y gives

U
X =V and Y:W'

The Jacobian of this transformation is given by
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If the density of (X,Y) is
e*ny, forxz>1, y >0,
fxy(z,y) = .
0, otherwise,

then the density of (U, V) is therefore given by
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provided that v > 1 and u > 0. We can now determine the density of U as follows.



Routine Way: The marginal density of U is
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for u > 0. We recognize that this is the density of an exponential random variable with parameter
1; that is, U = X2Y € Exp(1).
Slick Way: Since the joint density of (U, V) is

v2e", forv>1, u>0,

fU,V(u7 U) = {

0, otherwise,

we can immediately conclude that U and V are independent random variables with fy (v) = v2

for v > 1 and fy(u) = e~ for u > 0. And so we find (as before) that U = X2Y € Exp(1).

Problem #26, page 30: Suppose that X and Y have joint density

e ™M, for 0 <z <uy,

0, otherwise.

Ixy(z,y) = {

Let U=Y and V = % so that solving for X and Y gives
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The Jacobian of this transformation is given by
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The density of (U, V) is therefore given by
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provided that 0 < u < 00, 0 < v < oco. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fuv(u,v) = fu(u) - fv(v)
where

1
m for'l)>0.
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Notice that U € T'(2,A~!) and that V € F(2,2). (See pages 260-261.)

fu(u) = XN2ue ™ foru>0, and fy(v)=

Problem #27, page 30: Suppose that X; € I'(a1,b) and Xg € I'(ag, b) are independent random
variables so that their joint density is

1 —1 —1 1 - b— b
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’ 0, otherwise.




Let U = % and V = X1 4+ X5 so that solving for X; and X, gives
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The Jacobian of this transformation is given by
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The density of (U,V) is therefore given by

fov(u,v) = fx, x(wo(l+u) " o1 +u)™h) - |J]
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provided that 0 < u < 0o, 0 < v < oco. The marginal density of U is
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To evaluate o
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we make the substitution z = 3 so that dz = %dv. This implies that
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This now implies that
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u > 0,

which we recognize as the density of a (a1, az) random variable. (See page 260.) To find the
marginal density of V we observe that since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fov(u,v) = fu(u) - fv(v)

where ( ) 1
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Notice that V = X7 + X5 € T'(a1 + a2,b). (See page 260.) Alternatively, we can calculate
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is the density of a (a1, as) random variable. This implies that
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and so we conclude that
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as before.



