Example. Determine the Jacobian for the change-of-variables from cartesian coordinates to polar coordinates.

Solution. The traditional letters to use are

$$
x=r \cos \theta \text { and } y=r \sin \theta .
$$

However, to agree with the notation from class, we let

$$
x_{1}=y_{1} \cos y_{2} \quad \text { and } \quad x_{2}=y_{1} \sin y_{2} .
$$

In other words, our original variables are $\bar{x}=\left(x_{1}, x_{2}\right)$, and our new variables are $\bar{y}=\left(y_{1}, y_{2}\right)$. The variables \bar{x} and \bar{y} are related through the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined implicitly by

$$
g(\bar{x})=g\left(x_{1}, x_{2}\right)=\left(g_{1}\left(x_{1}, x_{2}\right), g_{2}\left(x_{1}, x_{2}\right)\right)=\left(y_{1}, y_{2}\right) .
$$

In other words,

$$
y_{1}=\sqrt{x_{1}^{2}+x_{2}^{2}} \text { and } y_{2}=\arctan \left(x_{2} / x_{1}\right) .
$$

We now compute the required partial derivatives:

$$
\frac{\partial x_{1}}{\partial y_{1}}=\cos y_{2}, \frac{\partial x_{1}}{\partial y_{2}}=-y_{1} \sin y_{2}, \frac{\partial x_{2}}{\partial y_{1}}=\sin y_{2}, \frac{\partial x_{2}}{\partial y_{2}}=y_{1} \cos y_{2}
$$

Therefore, the Jacobian is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\cos y_{2} & -y_{1} \sin y_{2} \\
\sin y_{2} & y_{1} \cos y_{2}
\end{array}\right|=y_{1} \cos ^{2} y_{2}+y_{1} \sin ^{2} y_{2}=y_{1}
$$

Thus, using the traditional notation, $J=r$. i.e., $\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$.

