Stat 351 Fall 2007
Assignment #6 Solutions

Problem #3, page 115: If 0 <y < 1/2, then

1-y 1—y
fr(y) = / IX )X (Y5 2) dz = / 2dz = 2(1 —2y).
y y

On the other hand, if 1/2 <y <1, then

y y
fy(y) :/ fX X0 (2.1 = y) dz:/ 2dz =22y —1).
1—y 1-y
Problem #6, page 115: Since E[F (X)) — F(X(1))] = E[F(X(,))] — E[F(X(1))], we compute
each of E[F(X(y))] and E[F(X))] separately. Therefore, by definition,

[e.e]

.mmanzj F(yn) ey (4n) i

—00

From Theorem IV.1.2, we know that fx (yn) = n[Fx,,, (yn)]" 1 f(yn) so that

/Oo F(y")fx(n) (Yn) dyn = /oo n[F(yn)]" f(yn) dyn.

—00 —0o0
Making the substitution u = F(y,) so that du = F'(y,)dy, = f(yn)dy, gives
1

I

—0 0 TL—|—1

Note that since F' is a distribution, our new limits of integration are F'(—oco) = 0 and F'(co0) = 1.
As for E[F(X(y))], using Theorem IV.1.2, we compute

[e.e] e}

F(y) fx (1) dyr = / Fy)n[l — F(y)]" ™" f(y1) dyr.

— 00

mmxmnz/

—0o0
Making the same substitution as above gives
1

00 1
/ F(y)n[1 = F(y)]" " f(y1) dys = /o nu(l —u)" ' du = n/ (1—v)" tdv=1-

—00 0 TL+1

Finally, we combine our two results to conclude that

BIF (Xo) ~ Pl = =2 - 1

n - n—1
n+1] n+1

Problem #9, page 116: (a): If X; and X» are independent Exp(a) random variables, then by

Theorem IV.2.1, the joint density of (X(1), X(2)) is given by

P o () = a%exp (—8E22) - for 0 < gy < yo < 00,
(1) 2@ 2 0, otherwise.

Suppose that U = X(1) and let V' = X(3) — X(q). Solving for X(;) and X o) gives
X(l) =U and X(Q) =U+V.



The Jacobian of this transformation is given by

0 0
P B O
oy ow| |1 1] 7

ou ov

Therefore, by Theorem 1.2.1, the density of (U, V) is given by

2 u+u+v 2 2u+v 2 _ 1 _
fu () = fy oo (0 ut0)-1J] = 25 exp <‘> T <‘ a )Zf e

provided that v > 0 and v > 0. The marginal density of U is

fU(u) = / fU,V(U,U) dv = / 2672u/a . }e*”/a dv = 2672u/a
oo 0

a a a

for u > 0. We recognize that this is the density of an exponential random variable with parameter
a/2; that is, U = X(;y € Exp(a/2). The marginal density of V' is

& 2 1 1
o) = [ fuvluydu= [T el ey — e
—00 0

a a a

for v > 0. We recognize that this is the density of an exponential random variable with parameter
a; that is, V' = X(9) — X(1) € Exp(a). Since we can express fy,v (u,v) = fu(u) - fy(v) we conclude
that U and V' are independent; in other words, X (1) and X(9) — X(1) are independent.

(b): To compute E(X(2)|X1) = y), we can use properties of conditional expectation (Theo-
rem 11.2.2):
E(X@)|Xq) =y)=EX@g — X + X0)lXa) =v)
= E(X@) — X0l X0y =y) + E(X)| Xy =v)
= E(X@) — X)) +y
=a+ty

where the first expression after the third equality follows since X () — X(y) is independent of Xy
and the second expression follows since X(q) is “known” when conditioned on the value Xy = y.

As for E(X(1)|X(2) = 7), we need to compute this by definition of conditional expectation. That
is,

! ) = PoXe o) | genltelt | 1 e
XX @=s\¥1) = fX(Q) (7) B %(1 _ ef:v/a) ce—w/a g 1 — e—t/a

provided 0 < y; < «. This then gives

e /e 1

— — * o v ﬂ S x —pr/a
E(X(1)|X(2) =zx)= /_Oo fx(1)|x(2):x(y1)dy1 _/0 dy, = e e—z/a) /0 y1 e Y/ gy .

a 1—e/a

Integrating by parts gives

x
/ yre N dy; = a® — a’e ™ — qpe /0,
0



Therefore,

a? — a?e %/ — qre~

a(l —e~%/a)

z/a —z/a

xre T

BXo)Xe =) = BT

=a

Problem #10, page 116: Let X;, Xo, and X3 are independent, identically distributed U(0,1)
random variables. Notice that if x > 1/2, then since X3y > X(;) we conclude

P(X(g) > % ’X(l) = a;) = 1.
On the other hand, suppose that 0 < x < 1/2. By equation (3.10) on page 114,

IX )X (Y1, 93) = 6(y3 — y1)

provided 0 < y1 < y3 < 1. Therefore, we find

1
/ IX )X (2,Y3) dys
1/2

P(X@ > 5| X =2) =

For the numerator we calculate

1

1 1 9 3
/ fX )X (T,Y3) dyS/ 6(ys — ) dys = (3y3 — bays)| = — — 3w = (3 —4a).
1/2 1/2 4 4

1/2

As for the denominator, from Remark 3.1 on page 114, we find
fxg, (@) = 3(1 — x)?
provided 0 < z < 1. Putting these pieces together, we conclude

3(3 —4x 3—4x
P(X() > 3| Xq) =2) = 4321—35)2) = 4((1 _$))2-

That is,
P(X >1X =) = 41*1)2’ — — )
(X3 > 2 [ X)) =) {17 S

Problem #12, page 116: Since Xi,...,X,,Y1,...,Y, are ii.d. U(0,a) random variables, we
conclude from Theorem IV.1.2 that X(,) and Y{,) are independent and identically distributed
B(1,n) random variables. In order to simplify matters we let X = X(,,) and Y = Y{;,y so that X
and Y have common density function

n on-1
f(w):a—nx" , O<z<a
and common distribution function
0, x<L0,
Flz)=4%, 0<z<a,



If we now let S = min{X,Y} and 7' = max{X,Y}, then Theorem IV.2.1 implies that the joint
density of (5,7) is

2
_ n ,1 n—1 __ 2n n—1l,n—1
vaT(‘S’t)_Q'(TnS ‘a—nt =S ", O<s<t<a.
The next step is to let U = % and V = S so that S =V and T'= UV. We find the Jacobian of
this transformation is

Os  0s

J:8u (911:0 1:_
ot ot vou
ou Ov

The density of (U, V) is therefore given by

2n2 2n? _
fov(u,v) = for(v,uv) - |J| = o = oy 2t

-1
" ( a2n

uv)nfl

provided that 1 < u < oo, 0 <v < 7 < a. The marginal density for U is therefore given by

v=a/u 2n
n _1a —
_ w1 — nu (n+1)

°° 2n* 1 afu 2n—1 n 1.2
fU(u) = / fUJ/(u’ ’U) dv = o u / " do = —a2n un e o o
0 v=0

oo a

provided that 1 < u < co. Since we are interested in

max{X(n) 5 }/(n) }

Zn:nlog< >:nlogU

we can now use techniques from Chapter I to find the density of Z,. Let Z = Z,, = nlogU.
Therefore, Fz(z) = P(Z < z) = P(U < €*/") and so

fz(z) = %ez/”fU(ez/n) — %ez/n i n<ez/n)—(n+l) — e ?

provided that 0 < z < co. Hence we conclude that Z, € Exp(1).



