Stat 351 Fall 2007
Solutions to Assignment #5

1. (a) We begin by calculating E(Y;). That is,

EY1)=1-P(Y=1)+(-1)- P(Y
We now notice that S,+1 = S,
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We can now conclude that {X,,,n =1,2,...} is, in fact, a martingale.

1. (b) Notice that
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Therefore,

We now compute
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Hence, {Z,,n =1,2,...} is, in fact, a martingale.



2. We interpret the conditional probabilities given in the problem to mean
PXpr1=010—-qzp| Xy =2n)=1—2, and P(X,y1=q¢+ (1 —qQ)zp| Xy = zp) = xp.
Therefore,
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In other words,
E(Xnt1|X1,..., Xn) = X,

and so we conclude that {X,,,n =1,2,...} is, in fact, a martingale.



