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187 14 Yn:min{Xl,Xg,...,Xn} Yn:max{Xl,Xg,...,Xn}

188 11 andn=1,2,.... and n=2,3,....

196 5 << tp_1 <tnh_1

200 7- g(t) 9(t, s)

200  5_ Po Po

227 17_ T, € Exp(3). T, € Exp(s), that is, ET, = 5.

235 15_ picture)such picture) such

266 1_ z>0n>2n>2 z>0n>2n>4

267 16 ~ 0.1006 ~ 0.1003

268 5 21.a=2  b=2. 27. a=b=3/7.
Corrections

Page 38: In Theorem 2.3 it must also be assumed that EY? < co and
that E(g(X)) < oo.

Page 72, line 13: Replace this line by the following: logt + p +

20%n > 10%n for any fixed t > 0 as n — oo and exp{cn?}/n! — oo

Page 161, Theorem 3.3: We also assume that F|X,,|” < oo for all n.

Page 184, Example 7.7: It is not necessary that V,, and Z,, are inde-
pendent for the conclusion to hold. (It is, however, necessary in order
for T,, to be t-distributed, which is of statistical importance; cf. Remark
7.3, page 185.)

Pages 203-204:  Replace the piece following formula (1.13) until Remark
1.2 by the following:

This proves (a) for the case k = 2. In the general case (a) follows
similarly, but the computations become more (and more) involved. We
carry out the details for K = 3 below, and indicate the proof for the
general case. Once (a) has been established (b) is immediate.

Thus, let £k =3 and 0 < s <t < u. By arguing as above, we have

P(Th <s<Ty <t,T3>u)

=P(X(s)=1,X(t) =2,X(u) <3)
=P(X(s)=1,X(t)—X(s)=1,X(u) — X(t) =0)
= P(X(s) =1)- P(X(t) = X(s) = 1) - P(X(u) = X(2) = 0)

= Ase M\t — 5)e M) Lo AUTE) — Z\26(1 — )T,
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and

Py <s<Th <t,T3<u)+ P(Ty <s< Ty <t,T3 > u)
=P(T1 <s<Th<t)=P(X(s)=1,X(t) >2)
= P(X(s) =1, X(t) - X(s) = 1)
= P(X(s) =1)- (1= P(X(t) - X(s) = 0))
= Xse . (1 — e M9y = \g(e™ ™ — ™M),

Next we note that

FT17T27T3(37757U) = P(Tl <s,13 <t 1T3< U)
:P(TQSS,T3§U)+P(T1 SS<T2§t,T3§U),

that
P(TQ <s,T5 < u)—i—P(TQ <s,T5 > ’LL)
=P(Ty <s)=P(X(s)>2)=1—-P(X(s) <1)
—=1—e = \se
and that
P(Ty <s,T3 >u)=P(X(s) >2,X(u) <3)
=P(X(s) =2,X(u) — X(s) =0)
=P(X(s)=2) - P(X(u) — X(s) =0)
_ ()\5)26—)\5 o~ Mu—s) (As)? o~ u
2 2

We finally combine the above to obtain

FTI,T2,T3(8,ZL/7U) = P(TQ < 8) —P(T2 < S,T3 > 'LL)
+P(T1§S<T2St)—P<T1§S<T2§t,T3>U)

by 2
( ‘29) e—/\u

+ As(e™™ — ™M) — A2s(t — s)e™ M

=1—e™ - Ase ™ —

2
e (1.14a)

=1—e " — Ase M — \2(st — 5 ) ,
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and, after differentiation,
fromrs (s, t,u) = A3e™ ™ for 0<s<t<u. (1.14b)

The change of variables 71 = T1, 1 + 170 =15, and 7y + 70 + 73 = 13
concludes the derivation, yielding

fT1)72,7'3 (1)1,’1)2, U3) = Aei)\vl . )\eisz . >\ei>\fu3, (114C)

for v, v9,v3 > 0, which is the desired conclusion.

Before we proceed to the general case we make the crucial obser-
vation that the probability P(Ty < s < Ty < t,T3 > u) was the only
quantity containing all of s,t¢, and u and, hence, since differentiation is
with respect to all variables, the only one that contributed to the den-
sity. This carries over to the general case, that is, it suffices to actually
compute only the probability containing all variables.

Thus, let £k > 3 and let 0 < t; <ts < ... <tr. In analogy with the
above we find that the crucial probability is precisely the one in which
the T; are separated by the ¢;. It follows that

FT11T21“-7T1€ (th la,... 7tk)
= —P(T1 <t <Th<ta<...<Tp_1 < tk—l,Tk > tk)
+ R(tl,tg, ... ,tk)
= —Akiltl (tQ - tl)(tg — tQ) s (tk—l — tk_g)t?i)\tk N (115&)
where R(t1,to,...,1t) is a remainder containing the probabilities of lower

order, that is, those for which at least one ¢; is missing.
Differentiation now yields

I1y T (B by ) = AFe™ AT, (1.15b)

which, after the transformation 7 =1, 7o =Ty — T, 73 =135 —T5, ...,
T = T — Ti_1, shows that

k
friropm (U1, Uz, o ug) = H Ae M (1.15¢)

i=1
for uy,us,...,ur > 0, and we are done. O

Page 207: Formula (1.21) only works for (and, hence, (1.22) has only
been strictly demonstrated for) j > 1. The following modifications show
that (1.22) holds for j = 0,1 (actually, these cases are easier):
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Let ¢ =0 and j = 0. We have

P(X(s) =0, X(s+1t) — X(s) =0) = P(X(s +1t) = 0)

which is (1.22) for that case.
For ¢ =0 and j = 1 we have
P(X(s)=0,X(s+t)—X(s)=1)=P(X(s) =0, X(s+t)=1)
:P(S<T1 §S+t<T2)

oo s+t
- / fT17T2 (tlth)dtldtg.
s+t Js

Inserting the expression for the density as given by (1.20) (with £ = 1)
and integration yields

P(X(s)=0,X(s+1t)— X(s) =1) =e . e M,

which is (1.22) for that case.
Page 209-210, Example 2.1.(b): The solution should be replaced by

(b) Let 71,72, ... be the times between cars. Then 71, 7o, ... are indepen-
dent, Exp(<s)-distributed random variables. The actual waiting times,
however, are 77 = 73, | 7, < 0.1, for £ > 1. Since there are N cars passing
before she can cross, we obtain

T=714+1+...+7x,
which equals zero when N equals zero. It follows from Section II1.5 that

1 0.1 eld —2.5
= . O

ET=EN-E1} = (e —1)'(1*5—61.5_1) 15

Uppsala, 12 August, 2004 Allan Gut



