Stat 351 Fall 2006
Assignment #8 Solutions

Problem #9, page 144: Note that by Theorem 7.1, in order to show X;, X9, and X3 are
independent, it is enough to show that cov(X7, Xo) = cov(Xy, X3) = cov(Xsa, X3) = 0. Thus, if X3
and X, + X3 are independent, then cov(Xi, X2 + X3) = cov(X1, X2) + cov(X1, X3) = 0 and so

COV(Xl,XQ) = —COV(Xl,Xg). (1)

If X5 and X; + X3 are independent, then cov(Xs, X1 + X3) = cov(Xa, X1) + cov(X2, X3) = 0 and
SO
COV(XQ,Xl) = —COV(XQ,Xg). (2)

Finally, if X3 and X7+ X3 are independent, then cov(Xs, X1+ X3) = cov(X3, X1)+cov(Xs, X2) =0
and so
cov(Xs3, X1) = — cov(X3, Xo). (3)

Since (1), (2), and (3) must be simultaneously satisfied, the only possibility is that cov(Xi, Xs) =
cov(X1, X3) = cov(Xa, X3) = 0. Hence, X;, X5, and X3 are independent as required.

Problem #10, page 145: From Assignment #7, we know that the distribution of Y = (Y7,Y3)’

is
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and so we see that Y7 € N(2,10), Y5 € N(—1,5), and corr(Y7,Ys) = % Thus, by the results in
Section V.6, the distribution of Y7|Ys = y is normal with mean 2 + % . %(y —(-1)) =y+3 and

2
variance 10 <1 - <%) > = 5. That is,
VilYa =y € N(y +3,5).

Problem #11, page 145: From Assignment #7, we know that the distribution of Y = (Y1,Y3)’
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and so we see that Y7 € N(0,16), Y € N(8,16), and corr(Y7,Ys) =
Section V.6, the distribution of Y7|Y2 = 10 is normal with mean 0 — % .

16 (1 (=1)%) = %. That is

%. Thus, by the results in
(10—8) = —7 and variance
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Vi[Ya=10€ N (-3, %).
Problem #13, page 145: From Assignment #7, we know that the distribution of X = (X7, X2, X3)’
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and so we see that X; € N(0,2), Xo € N(0,9), and X3 € N(0,13). Since cov(X;, X3) = —5,
we conclude that X; + X3 € N(0,5). Finally, we compute cov(Xq, X7 + X3) = cov(Xe, X;) +

cov(Xso, X3) =4 —10 = —6 and so corr(Xs, X1 + X3) = —%. Thus, by the results in Section V.6,



the distribution of X»|X; + X3 = x is normal with mean 0 — 2% - %(:p —0) = —% and variance
2
9 (1 -(-%) ) — 2. That is,
Xo|X1+ Xs=xe N (-%,2).

Problem #14, page 145: From Assignment #7, we know that the distribution of Y = (Y7, Y2, Y3)’
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By definition,
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From Definition III, we know
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The joint distribution of (Y2, Y3)’ is
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and so
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Thus, we conclude
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which we recognize as the density function of a normal random variable with mean 0 and variance
3/4. That is,
Yl‘Yg:Y},:OEN(O,%).



