
Stat 351 Fall 2006
Assignment #5 Solutions

Problem #2, page 55: Suppose that X + Y = c. By definition of conditional density,

fX|X+Y =c(x) =
fX,X+Y (x, c)

fX+Y (c)
.

We now find the joint density fX,X+Y (x, c). Let U = X and V = X + Y so that X = U and
Y = V − U . The Jacobian of this transformation is

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

Since X and Y are independent Exp(1), the joint density of (X, Y ) is

fX,Y (x, y) = fX(x) · fY (y) =

{
e−x−y, for x > 0, y > 0,

0, otherwise,

The joint density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (u, v − u) · |J | = e−v

provided that u > 0 and v > u. The marginal density for V is therefore

fV (v) =
∫ v

0
e−v du = ve−v, u > 0.

Since V = X + Y , we can rewrite these densities as fX,X+Y (x, c) = e−c, 0 < x < c, and fX+Y (c) =
ce−c, c > 0. Finally, we conclude

fX|X+Y =c(x) =
fX,X+Y (x, c)

fX+Y (c)
=

e−c

ce−c
=

1
c

provided that 0 < x < c. That is,

X|X + Y = c ∈ U(0, c).

Problem #8, page 56: We begin with the observation that

Y1|N = n ∈ Bin(n, 1/2).

Therefore, by the law of total probability, if y = 0, 1, 2, . . .,

P (Y1 = y) =
∞∑

n=y

P (Y1 = y|N = n) P (N = n) =
∞∑

n=y

(
n

y

) (
1
2

)y (
1
2

)n−y

· λne−λ

n!
.

This can be manipulated in exactly the same way as in Example 3.2 on page 42. Thus, we conclude

P (Y1 = y) =
λy

2yy!
e−λ/2, i.e.,Y1 ∈ Po(λ/2).



Next, since Y2 = N − Y1 we find that

P (Y2 = y) = P (N − Y1 = y) = P (Y1 = N − y)

and so by the law of total probability, if y = 0, 1, 2, . . .,

P (Y2 = y) =
∞∑

n=y

P (Y1 = n− y|N = n)P (N = n)

But since Y1|N = n ∈Bin(n, 1/2), we find

P (Y2 = y) =
∞∑

n=y

(
n

n− y

) (
1
2

)n−y (
1
2

)y

· λne−λ

n!
=

λy

2yy!
e−λ/2, i.e.,Y2 ∈ Po(λ/2)

which also follows as in Example 3.2 on page 42. In order to show Y1 and Y2 are independent, we
proceed as follows:

P (Y2 = y2|Y1 = y1) = P (N − Y1 = y2|Y1 = y1) = P (N + y1 + y2|Y1 = y1)

=
P (Y1 = y1|N + y1 + y2) P (N = y1 + y2)

P (Y1 = y1)

where the first equality follows since Y2 = N−Y1 and the last equality follows from Bayes’ Theorem.
We now know all of the required densities, and so substituting in gives

P (Y1 = y1|N + y1 + y2) P (N = y1 + y2)
P (Y1 = y1)

=
(

y1 + y2

y1

) (
1
2

)y1+y2 e−λ λy1+y2

(y1 + y2)!

e−λ/2 (λ/2)y1

y1!

= e−λ/2 (λ/2)y2

y2!
= P (Y2 = y2).

That is, P (Y2 = y2|Y1 = y1) = P (Y2 = y2) and so Y1 and Y2 are independent.

Problem #9, page 56: (a) The density function for Y is given by

fY (y) =
∫ ∞

0

x2

2y3
· e−

x
y dx

provided that 0 < y < 1. This can be integrated by parts twice to produce

fY (y) =
∫ ∞

0

x2

2y3
· e−

x
y dx = 1.

That is, Y ∈ U(0, 1). However, a slicker proof uses the gamma function as follows. Let u = −x
y so

that du = − 1
y dx, from which it follows that

fY (y) =
∫ ∞

0

x2

2y3
· e−

x
y dx =

1
2

∫ ∞

0
u2e−u du =

1
2
Γ(3) =

2!
2

= 1.



(b) The conditional density of X given Y = y is therefore

fX|Y =y(x) =
fX,Y (x, y)

fY (y)
=

x2

2y3 · e−
x
y

1
=

x2

2y3
· e−

x
y

provided that x > 0. That is, X|Y = y ∈ Γ(3, y).

(c) Since Y ∈ U(0, 1), we know that E(Y ) = 1
2 and Var(Y ) = 1

12 . We also use the fact from
page 260 that the mean of a Γ(p, a) random variable is pa and the variance is pa2. Thus, we find
that the mean of X is

E(X) = E(E(X|Y )) = E(3Y ) = 3E(Y ) =
3
2

and the variance of X is

Var(X) = Var(E(X|Y )) + E(Var(X|Y )) = Var(3Y ) + E(3Y 2)

= 9Var(Y ) + 3E(Y 2)

= 9Var(Y ) + 3
[
Var(Y ) + (E(Y ))2

]
=

9
12

+ 3
(

1
12

+
1
4

)
=

7
4
.

Problem #10, page 56: (a) Since∫ 1

0

∫ 1−x

0
cx dy dx = c

∫ 1

0
x(1− x) dx = c

[
1
2
x2 − 1

3
x3

]1

0

=
c

6

we conclude that c = 6.

(b) The marginal for Y is therefore given by

fY (y) =
∫ 1−y

0
6x dx = 3(1− y)2, 0 ≤ y ≤ 1

and the marginal for X is

fX(x) =
∫ 1−x

0
6x dy = 6x(1− x), 0 ≤ x ≤ 1.

We conditional densities are then

fX|Y =y(x) =
6x

3(1− y)2
=

2x

(1− y)2
, 0 ≤ x ≤ 1− y

and
fY |X=x(y) =

6x

6x(1− x)
=

1
1− x

, 0 ≤ y ≤ 1− x.

Finally, we find

E(X|Y = y) =
∫ 1−y

0
x · 2x

(1− y)2
dx =

2
3
(1− y)



and

E(Y |X = x) =
∫ 1−x

0
y · 1

1− x
dy =

1
2
(1− x).

Problem #19, page 58: If X|M = m ∈ Exp(a) with M−1 ∈ Γ(p, a), then in order to determine
the distribution of X, the first step is to find the density of M . Thus, if m > 0,

FM (m) = P (M ≤ m) = P

(
1
M

≥ 1
m

)
=

∫ ∞

1/m
f1/M (x) dx.

Taking derivatives with respect to m gives

fM (m) =
1

m2
f1/M (1/m) =

1
m2

· 1
Γ(p)

· 1
ap

·m1−p · e−1/(ma) =
1

Γ(p)
· 1
ap

·m−1−p · e−1/(ma)

provided that m > 0. Therefore, by the law of total probability,

fX(x) =
∫ ∞

0
fX|M=m(x)fM (m) dm =

∫ ∞

0

1
Γ(p)

· 1
ap

·m−1−p · e−1/(ma) · 1
m

· e−x/m dm

=
1

Γ(p)
· 1
ap

∫ ∞

0
m−2−p · e−

1
m(x+ 1

a) dm

Let u = 1
m so that du = − 1

m2 dm and the integral above becomes

=
1

Γ(p)
· 1
ap

∫ ∞

0
up · e−u(x+ 1

a) du.

Next let v = u
(
x + 1

a

)
so that dv =

(
x + 1

a

)
du and the integral above becomes

=
1

Γ(p)
· 1
ap

·
(

x +
1
a

)−p−1 ∫ ∞

0
vp · e−v dv.

But ∫ ∞

0
vp · e−v dv = Γ(p + 1)

and so we conclude, for x > 0 (and using the fact that Γ(p + 1) = p · Γ(p)) that

fX(x) =
1

Γ(p)
· 1
ap

·
(

x +
1
a

)−p−1

· Γ(p + 1) =
p

ap
· 1(

x + 1
a

)p+1

which happens to be the density function of a translated Pareto distribution.


