Stat 351 Fall 2006
Solutions to Assignment #5

Problem #13, page 28: Suppose that Y € x?(n) so that the density of Y is given by
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Let U = T Since y > 0, the distribution function of U is given by
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Taking derivatives with respect to u gives
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for 0 < w < 0co. The mean of U is then given by
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In order to evaluate this integral, we make the substitution v = ©=2/2 so that dv = —u~3du.
Therefore,
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That is,
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Problem #23, page 29: Suppose that X and Y have joint density
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0, otherwise.
Let U = X and V = XY so that solving for X and Y gives
X=U and Y =V/U.

The Jacobian of this transformation is given by
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The density of (U, V) is therefore given by
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foy(u,v) = fxy(u,v/u)-|J| = (1+u)2(1+u-v/u)? u (1+u)? ' (1+0)2




provided that 0 < u < 00, 0 < v < co. Since we can write the joint density as a product of a
function of w only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fov(u,v) = fu(u) - fv(v)
where

fu(u) = (e foru>0, and fy(v)= (14_11))2 for v > 0.

Notice that both U and V have the same distribution, namely F'(2,2). (See page 261.)
Problem #24, page 29: Suppose that X and Y have joint density

2
Fxy(2,y) = {(1+x+y)3 for z,y > 0,

0, otherwise.
(@) Let U=X+Y and V = XLH,, so that solving for X and Y gives
X=UV and Y=U-UV.

The Jacobian of this transformation is given by
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The density of (U, V) is therefore given by
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provided that 0 < v < 0o, 0 < v < 1. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that

foy(u,v) = fu(u) - fv(v)

where

2
fu(u) = ﬁ foru>0, and fy(v)=1for0<wv<l
Therefore, the density of X + Y is
2u
fxiv(u) = e for u > 0.

(b) Let U = X — Y and V = X, so that solving for X and Y gives
X=V and Y =V-U.

The Jacobian of this transformation is given by
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The density of (U,V) is therefore given by
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foy(u,v) = fxy@,0o—u)-|J] = A+vtov—u)p 1= (1420 —u)3

provided that v > v and v > 0 (i.e.,, v > max{0,u}), and —oc0 < u < oo. If u > 0, then
max{u,0} = u, and so we calculate
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If u <0, then max{u,0} = 0, and so we calculate
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Therefore, the density of X +Y is
Fray(u) = g for —oo < u <
u) = —— for —oo < u < oc0.
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Problem #26, page 30: Suppose that X and Y have joint density
Fxv () ANe M, for 0 <z <y,
T,y) =
Y5y 0, otherwise.
Let U=Y and V = %, so that solving for X and Y gives
uv
=— d Y=U
i+v
The Jacobian of this transformation is given by
0. 0
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The density of (U, V) is therefore given by
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provided that 0 < u < 00, 0 < v < oco. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

foy (u,v) = fu(u) - fv(v)
where

fu(u) = X2ue ™ foru>0, and fy(v)= 5 for v >0.

b
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Notice that U € T'(2,A7!) and that V € F(2,2). (See pages 260-261.)



