Mathematics 312 (Fall 2013) September 13, 2013
Prof. Michael Kozdron

Lecture #5: The Complex Exponential Function

Recall that last class we discussed the argument of a complex variable as well as some of the
motivation for its definition.

Definition. Suppose that z = x + iy € C, z # 0. Define the argument of z, denoted arg z,
to be any solution # of the pair of equations
- and sinf = ﬂ,

cosf =
2| 2|

and define the principal value of the argument of z, denoted Arg z, to be the unique value
of argz € (—m,7]. If 2 =0, we set arg0 = {0, £27, +4m, ...} so that Arg0 = 0.

Definition. Suppose that z € C. We define the polar form of z to be re? where r = |z| and
0 = Arg z. For convenience, we will write z = re®.

Example 5.1. Write z = —1 — ¢ in polar form and identify arg z.

Solution. If z = —1 — i, then |2| = \/(—1)2 + (=1)2 = v/2 = r. Moreover,

1
cosf) = ——— and sinf = ——
V2 V2
implies that
5
0 = Zﬁ + 27k

for k € Z. Thus, Argz = —37/4 and

3m 3w 3T 3m oT
o Ty V= T ok ke =0y ok ke,
arg z { R ™ m, } { 1 + 2k k € } {4 + 2k k € }

Hence, the polar form of z = —1 — i is v/2e%"/4. Equivalently, we can represent z as an
ordered pair (z,y) € R? as

(—1,-1) = <\/§cos(—37r/4), \/§sin(—37r/4)) .

Suppose that z = re' is the polar form of z € C. As in the previous example, we can write
z in cartesian coordinates as (rcosf,rsinf). Using our identification of (z,y) € R? with
z=ux+ 1y € C, we conclude that an equivalent representation of z is

z=rcosf +irsiné.

This is also sometimes called the polar form of z.
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Definition. Suppose that z € C. The polar form of z is defined as

2 =rcosf +irsinf = re?

where r = |z] and 0 = Arg z.

If we take » = 1 in the definition of polar form, then we conclude that

cosf +isinf = ¥

which leads to the following definition.

0

Definition. The complex exponential €? is defined as e = cos @ + isin 6.

Remark. If we take 6 = 7 in definition of complex exponential, then we have one of the
most magical formulas in all of mathematics:

'™ = cos(r) +isin(r) = —1 410 = —1,

or equivalently,

’6”—1—1:().‘

This is Euler’s formula relating all five fundamental constants of mathematics!!!! The
constant e comes from calculus, 7 comes from geometry, ¢ comes from algebra, and 1 is the
basic unit for generating the arithmetic system from the usual counting numbers.

Properties of the Complex Exponential e
Proposition 5.2. ¢~ = ¢if

Proof. We find 4 .
e " = cos(—0) + isin(—0) = cos(h) — isin(h) = e

and the proof is complete. O]
Proposition 5.3. || =1
Proof. Using the previous proposition, we find

|| = eeif = ee = (cos(f) + isin(h))(cos(h) — isin(f)) = cos?(A) + sin?(g) = 1
as required. N
—i0

.t 1
Proposition 5.4. — =e¢
el
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Proof. We find

1 1 _ 1 cos(f) — isin(0) _ cos(#) — isin(0)
e cos(f) + isin(f)  cos(f) + isin(f) cos(f) — isin(6) et
= cog(@) — isin(0)

and the proof is complete.

Proposition 5.5. ¢ = ¢!0+276) | c 7

Proof. Since the real-valued sine and cosine functions are each 27-periodic, we know that
cos(f) = cos(0 + 27k) and sin(f) = sin(f + 27k)
so that
e = cos(f) + isin(f) = cos(f + 2rk) + isin(f + 27k) = ' @+2™H)
as required.

Proposition 5.6. ¢?1¢2 = ¢i01+02)

Proof. By definition,

e = (cos(6y) + isin(y))(cos(fs) + isin(6y))
= cos(6) cos(62) + i cos(6;) sin(f2) + isin(6;) cos(h2) — sin(6;) sin(fs)
= cos(6) cos(fy) — sin(0;) sin(0s) + i(cos(6;) sin(fy) + sin(6;) cos(6s))
= cos(0; + 02) + isin(6; + 65)
_ il01+62)

completing the proof.

i0
.\ e (01—
Proposition 5.7. = !(01=02)
e

Proof. Using our previous propositions, we find

67:01
— 61‘616—1‘92 — eiel—iez — 6i(91—92)

002
as required.
Corollary 5.8. If z; = 1€ and zo = roe'®2, then

21729 = rreetP1t02),

and if zo # 0, then
21 — Eei(91—92)
<2 ) '

Exercise 5.9. Prove the previous corollary.
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Powers: An Application of Complex Exponentials

Recall that if a € R and n, m € Z, then (a")™ = a™. In particular, if z € R, then
()" = ™. As we will now show, this same sort of result is true for the complex exponential.

Theorem 5.10. Let z = re? be the polar form of the complex variable z. If n is a non-

negative integer, then

o T,neznG.

Proof. The proof is by induction. Clearly it is true for n = 1. If n = 2, then we find from
Corollary 5.8 that A . A .
22 _ (7‘619)(7”626) _ 7,,261((9-‘,-9) _ 7"26126.

If n = 3, then
23 _ 222 _ (7"26120)(7’610) _ 7,361(29+0) _ 7“36139.
In general, if 2¥ = r¥e? for some k, then
ZkJrl — ZkZ — (Tkezke)(rew) — Tk+lez(k9+9) — ,r,kJrlez(kJrl)H

which completes the proof. O]

Note that this theorem can sometimes be used to simplify multiplication of complex variables.
Example 5.11. Determine the real and imaginary parts of (=1 — ).

Solution. We know that the polar form of —1 — i is v/2e37/4 and so
16 , . .
(—1— )16 = (ﬁ) o= 16i(37/4) _ o8 —12im _ 256(c'™) 12 = 256(—1)"12 = 256

using the previous theorem along with Euler’s formula. Thus, Re ((—1 — 1)) = 256 and
Im ((—1 —4)'%) = 0.
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