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Lecture #5: The Complex Exponential Function

Recall that last class we discussed the argument of a complex variable as well as some of the
motivation for its definition.

Definition. Suppose that z = x + iy ∈ C, z �= 0. Define the argument of z, denoted arg z,
to be any solution θ of the pair of equations

cos θ =
x

|z| and sin θ =
y

|z| ,

and define the principal value of the argument of z, denoted Arg z, to be the unique value
of arg z ∈ (−π, π]. If z = 0, we set arg 0 = {0,±2π,±4π, . . .} so that Arg 0 = 0.

Definition. Suppose that z ∈ C. We define the polar form of z to be reiθ where r = |z| and
θ = Arg z. For convenience, we will write z = reiθ.

Example 5.1. Write z = −1− i in polar form and identify arg z.

Solution. If z = −1− i, then |z| =
�

(−1)2 + (−1)2 =
√
2 = r. Moreover,

cos θ = − 1√
2

and sin θ = − 1√
2

implies that

θ =
5π

4
+ 2πk

for k ∈ Z. Thus, Arg z = −3π/4 and

arg z =

�
−3π

4
,−3π

4
± 2π,−3π

4
± 4π, . . .

�
=

�
−3π

4
+ 2πk : k ∈ Z

�
=

�
5π

4
+ 2πk : k ∈ Z

�
.

Hence, the polar form of z = −1 − i is
√
2e−3iπ/4. Equivalently, we can represent z as an

ordered pair (x, y) ∈ R2 as

(−1,−1) =
�√

2 cos(−3π/4),
√
2 sin(−3π/4)

�
.

Suppose that z = reiθ is the polar form of z ∈ C. As in the previous example, we can write
z in cartesian coordinates as (r cos θ, r sin θ). Using our identification of (x, y) ∈ R2 with
z = x+ iy ∈ C, we conclude that an equivalent representation of z is

z = r cos θ + ir sin θ.

This is also sometimes called the polar form of z.
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Definition. Suppose that z ∈ C. The polar form of z is defined as

z = r cos θ + ir sin θ = reiθ

where r = |z| and θ = Arg z.

If we take r = 1 in the definition of polar form, then we conclude that

cos θ + i sin θ = eiθ

which leads to the following definition.

Definition. The complex exponential eiθ is defined as eiθ = cos θ + i sin θ.

Remark. If we take θ = π in definition of complex exponential, then we have one of the
most magical formulas in all of mathematics:

eiπ = cos(π) + i sin(π) = −1 + i0 = −1,

or equivalently,

eiπ + 1 = 0.

This is Euler’s formula relating all five fundamental constants of mathematics!!!! The
constant e comes from calculus, π comes from geometry, i comes from algebra, and 1 is the
basic unit for generating the arithmetic system from the usual counting numbers.

Properties of the Complex Exponential eiθ

Proposition 5.2. e−iθ = eiθ

Proof. We find
e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ) = eiθ

and the proof is complete.

Proposition 5.3. |eiθ| = 1

Proof. Using the previous proposition, we find

|eiθ| = eiθeiθ = eiθe−iθ = (cos(θ) + i sin(θ))(cos(θ)− i sin(θ)) = cos2(θ) + sin2(θ) = 1

as required.

Proposition 5.4.
1

eiθ
= e−iθ
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Proof. We find

1

eiθ
=

1

cos(θ) + i sin(θ)
=

1

cos(θ) + i sin(θ)

cos(θ)− i sin(θ)

cos(θ)− i sin(θ)
=

cos(θ)− i sin(θ)

|eiθ|
= cos(θ)− i sin(θ)

= e−iθ

and the proof is complete.

Proposition 5.5. eiθ = ei(θ+2πk), k ∈ Z

Proof. Since the real-valued sine and cosine functions are each 2π-periodic, we know that

cos(θ) = cos(θ + 2πk) and sin(θ) = sin(θ + 2πk)

so that
eiθ = cos(θ) + i sin(θ) = cos(θ + 2πk) + i sin(θ + 2πk) = ei(θ+2πk)

as required.

Proposition 5.6. eiθ1eiθ2 = ei(θ1+θ2)

Proof. By definition,

eiθ1eiθ2 = (cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= cos(θ1) cos(θ2) + i cos(θ1) sin(θ2) + i sin(θ1) cos(θ2)− sin(θ1) sin(θ2)

= cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))

= cos(θ1 + θ2) + i sin(θ1 + θ2)

= ei(θ1+θ2)

completing the proof.

Proposition 5.7.
eiθ1

eiθ2
= ei(θ1−θ2)

Proof. Using our previous propositions, we find

eiθ1

eiθ2
= eiθ1e−iθ2 = eiθ1−iθ2 = ei(θ1−θ2)

as required.

Corollary 5.8. If z1 = r1eiθ1 and z2 = r2eiθ2, then

z1z2 = r1r2e
i(θ1+θ2),

and if z2 �= 0, then
z1
z2

=
r1
r2
ei(θ1−θ2).

Exercise 5.9. Prove the previous corollary.
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Powers: An Application of Complex Exponentials

Recall that if a ∈ R and n, m ∈ Z, then (an)m = anm. In particular, if x ∈ R, then
(ex)n = enx. As we will now show, this same sort of result is true for the complex exponential.

Theorem 5.10. Let z = reiθ be the polar form of the complex variable z. If n is a non-
negative integer, then

zn = rneinθ.

Proof. The proof is by induction. Clearly it is true for n = 1. If n = 2, then we find from
Corollary 5.8 that

z2 = (reiθ)(reiθ) = r2ei(θ+θ) = r2ei2θ.

If n = 3, then
z3 = z2z = (r2ei2θ)(reiθ) = r3ei(2θ+θ) = r3ei3θ.

In general, if zk = rkeikθ for some k, then

zk+1 = zkz = (rkeikθ)(reiθ) = rk+1ei(kθ+θ) = rk+1ei(k+1)θ

which completes the proof.

Note that this theorem can sometimes be used to simplify multiplication of complex variables.

Example 5.11. Determine the real and imaginary parts of (−1− i)16.

Solution. We know that the polar form of −1− i is
√
2e−3π/4 and so

(−1− i)16 =
�√

2
�16

e−16i(3π/4) = 28e−12iπ = 256(eiπ)−12 = 256(−1)−12 = 256

using the previous theorem along with Euler’s formula. Thus, Re ((−1− i)16) = 256 and
Im ((−1− i)16) = 0.
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