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Lecture #26: Taylor Series

Our primary goal for today is to prove that if f(z) is an analytic function in a domain
D, then f(z) can be expanded in a Taylor series about any point a ∈ D. Moreover, the
Taylor series for f(z) converges uniformly to f(z) for any z in a closed disk centred at a and
contained entirely in D.

Theorem 26.1. Suppose that f(z) is analytic in the disk {|z− a| < R}. Then the sequence
of Taylor polynomials for f(z) about the point a, namely

Tn(z; f, a) = f(a)+f
�(a)(z−a)+

f
��(a)

2!
(z−a)2+ · · ·+ f

(n)(a)

n!
(z−a)n =

n�

j=0

f
(j)(a)

j!
(z−a)j,

converges to f(z) for all z in this disk. Furthermore, the convergence is uniform in any
closed subdisk {|z − a| ≤ R

�
< R}. In particular, if f(z) is analytic in {|z − a| < R}, then

f(z) =
∞�

j=0

f
(j)(a)

j!
(z − a)j. (†)

We call (†) the Taylor series for f(z) about the point a.

Proof. It is sufficient to prove uniform convergence in every subdisk {|z−a| ≤ R
�
< R}. Set

R
�� = (R+R

�)/2 and consider the closed contour C = {|z− a| = R
��} oriented counterclock-

wise. By the Cauchy Integral Formula,

f(z) =
1

2πi

�

C

f(ζ)

ζ − z
dζ. (∗)

Observe that

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a

1

1−
�

z−a
ζ−a

� =
1

ζ − a

1

1− w
where w =

�
z − a

ζ − a

�

and so using the fact that

1− w
n+1

1− w
= 1 + w + w

2 + · · ·+ w
n or equivalently

1

1− w
= 1 + w + · · ·+ w

n +
w

n+1

1− w
,

we conclude

1

1−
�

z−a
ζ−a

� = 1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+

�
z−a
ζ−a

�n+1

1−
�

z−a
ζ−a

�

= 1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
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and
1

ζ − z
=

1

ζ − a

�
1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
�
. (∗∗)

Substituting (∗∗) into (∗) we conclude

f(z) =
1

2πi

�

C

f(ζ)

ζ − a

�
1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
�
dζ

=
1

2πi

�

C

f(ζ)

ζ − a
dζ +

(z − a)

2πi

�

C

f(ζ)

(ζ − a)2
dζ + · · ·+ (z − a)n

2πi

�

C

f(ζ)

(ζ − a)n+1
dζ

+
(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ.

However, from the Cauchy Integral Formula, we know

1

2πi

�

C

f(ζ)

ζ − a
dζ = f(a),

1

2πi

�

C

f(ζ)

(ζ − a)2
dζ = f

�(a),
1

2πi

�

C

f(ζ)

(ζ − a)3
dζ =

f
��(a)

2!
,

and in general
1

2πi

�

C

f(ζ)

(ζ − a)j+1
dζ =

f
(j)(a)

j!

so that

f(z) = f(a) + f
�(a)(z − a) + · · ·+ f

(n)(a)

n!
(z − a)n +

(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ

= Tn(z; f, a) +Rn(z; f, a).

Thus, we see that in order to show that Tn(z; f, a) converges to f(z) uniformly for |z−a| ≤ R
�,

it suffices to show that Rn(z; f, a) converges to 0 uniformly for |z − a| ≤ R
�. Suppose,

therefore, that |z − a| ≤ R
� and |ζ − a| = R

�� where R
�� = (R + R

�)/2 as before. By the
triangle inequality,

|ζ − z| ≥ R
�� −R

� =
R +R

�

2
−R

� =
R−R

�

2
,

and so

|Rn(z; f, a)| =
����
(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ

���� ≤
1

2π

�

C

����
f(ζ)(z − a)n+1

(ζ − z)(ζ − a)n+1

���� |dζ|

≤ 1

2π

�

C

|f(ζ)|(R�)n+1

(R��)n+1(R−R�)/2
|dζ|

≤ 1

π
max
ζ∈C

|f(ζ)|
�
R

�

R��

�n+1 1

R−R� �(C)

where �(C) = 2πR�� is the arclength of C. That is, after some simplification, we obtain

|Rn(z; f, a)| ≤
�

2R�

R +R�

�n 2R�

R−R� max
ζ∈C

|f(ζ)|.
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Notice that the right side of the previous inequality is independent of z. Since 2R�
< R+R

�,
the right side can be made less than any � > 0 by taking n sufficiently large. This gives the
required uniform convergence.

Example 26.2. Find the Taylor series for f(z) = e
z about a = 0.

Solution. Since f (n)(z) = e
z so that f (n)(0) = 1 for all non-negative integers n, we conclude

e
z = 1 + z +

z
2

2!
+

z
3

3!
+ · · · =

∞�

j=0

z
j

j!

for every z ∈ C.

Example 26.3. Find the Taylor series for both f1(z) = sin z and f2(z) = cos z about a = 0,
and then show that the Taylor series for eiz equals the sum of the Taylor series for cos z and
i sin z.

Solution. Observe that f �
1(z) = cos z = f2(z) and f

�
2(z) = − sin z = −f1(z). Since cos 0 = 1

and sin 0 = 0, we obtain

sin z = z − z
3

3!
+

z
5

5!
− z

7

7!
+ · · · =

∞�

j=0

(−1)j
z
2j+1

(2j + 1)!

and

cos z = 1− z
2

2!
+

z
4

4!
− z

6

6!
+ · · · =

∞�

j=0

(−1)j
z
2j

(2j)!

for every z ∈ C. Observe that

e
iz = 1 + (iz) +

(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+

(iz)6

6!
+ · · ·

=

�
1 +

(iz)2

2!
+

(iz)4

4!
+

(iz)6

6!
+ · · ·

�
+

�
iz +

(iz)3

3!
+

(iz)5

5!
+

(iz)7

7!
+ · · ·

�

=

�
1− z

2

2!
+

z
4

4!
− z

6

6!
+ · · ·

�
+ i

�
z +

i
2
z
3

3!
+

i
4
z
5

5!
+

i
6
z
7

7!
+ · · ·

�

=

�
1− z

2

2!
+

z
4

4!
− z

6

6!
+ · · ·

�
+ i

�
z − z

3

3!
+

z
5

5!
− z

7

7!
+ · · ·

�

= cos z + i sin z

as expected. It is worth noting that term-by-term manipulations of the sum of Taylor series
are justified by Theorem 26.1 since the Taylor series involved converge uniformly in closed
disks about the point a = 0.

Remark. Sometimes the phrase Maclaurin series is used in place of Taylor series when
a = 0.

Theorem 26.4. If f(z) is analytic at z0, then the Taylor series for f �(z) at z0 can be obtained
by termwise differentiation of the Taylor series for f(z) about z0 and converges in the same
disk as the Taylor series for f(z).
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Proof. Since f(z) is analytic at z0, the Taylor series for f(z) about z0 is given by

f(z) =
∞�

j=0

f
(j)(z0)

j!
(z − z0)

j
.

By termwise differentiation, we obtain

f
�(z) =

∞�

j=0

j
f
(j)(z0)

j!
(z − z0)

j−1 =
∞�

j=1

f
(j)(z0)

(j − 1)!
(z − z0)

j−1
. (∗)

Suppose now that g(z) = f
�(z). By Theorem 25.3, we know that g(z) is analytic at z0 so

that its Taylor series is

g(z) =
∞�

j=0

g
(j)(z0)

j!
(z − z0)

j
.

However, g(j)(z0) = f
(j+1)(z0) so that

f
�(z) = g(z) =

∞�

j=0

g
(j)(z0)

j!
(z − z0)

j =
∞�

j=0

f
(j+1)(z0)

j!
(z − z0)

j
. (∗∗)

But by a change of index, it is clear that (∗) and (∗∗) are equal as required.
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