Mathematics 312 (Fall 2013) Prof. Michael Kozdron

Lecture #20: Analyticity of the Complex Logarithm Function

Definition. Suppose that $z \in \mathbb{C} \setminus \{0\}$. We define the *principal value of the logarithm of z*, denoted Log *z*, to be

$$\operatorname{Log} z = \log |z| + i\operatorname{Arg}(z).$$

Proposition 20.1. The function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by f(z) = Log z is continuous at all z except those along the negative real axis.

Proof. Since $z \mapsto \log |z|$ is clearly continuous for all $z \in \mathbb{C} \setminus \{0\}$ and since $\operatorname{Log} z = \log |z| + i\operatorname{Arg}(z)$, the result follows from the fact that $z \mapsto \operatorname{Arg}(z)$ is discontinuous at each point on the nonpositive real axis. That is, let $z = x_0 + iy$ for some $x_0 < 0$ fixed. If $y \downarrow 0$, then $\operatorname{Arg}(z) \downarrow \pi$, whereas if $y \uparrow 0$, then $\operatorname{Arg}(z) \uparrow -\pi$. \Box

Recall that if $f: (0, \infty) \to \mathbb{R}$ is given by $f(x) = \log x$, then f'(x) = 1/x. The same type of formula holds for the principal value of the logarithm, but must be stated very carefully.

Theorem 20.2. The function $z \mapsto \text{Log } z$ is analytic in the domain $D = \mathbb{C} \setminus D^*$ where

$$D^* = \{ z \in \mathbb{C} : \operatorname{Re}(z) \le 0 \text{ and } \operatorname{Im}(z) = 0 \}$$

and satisfies

$$\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{Log} z = \frac{1}{z}$$

for $z \in D$.

Proof. Let w = Log z. We must show that

$$\lim_{z \to z_0} \frac{w - w_0}{z - z_0}$$

exists and equals $1/z_0$ for every $z_0 \in D$. However, we know (by definition of Log z) that $z = e^w$. We also know from Example 15.2 that $f(w) = e^w$ is entire with $f'(w) = e^w$. In other words,

$$\frac{\mathrm{d}}{\mathrm{d}w}f(w)\Big|_{w=w_0} = \frac{\mathrm{d}}{\mathrm{d}w}e^w\Big|_{w=w_0} = \frac{\mathrm{d}z}{\mathrm{d}w}\Big|_{w=w_0} = \lim_{w \to w_0} \frac{z-z_0}{w-w_0} = e^{w_0} = z_0. \tag{(*)}$$

The next step is to observe that by continuity (Proposition 20.1), $w \to w_0$ as $z \to z_0$. Hence,

$$\lim_{z \to z_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{w - w_0}{z - z_0}.$$
 (**)

However, compare the right side of (**) with (*) to conclude

$$\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log} z \bigg|_{z=z_0} = \lim_{z \to z_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{1}{\frac{z - z_0}{w - w_0}} = \frac{1}{z_0}$$

for every $z_0 \in D$.

October 23, 2013

Remark. Assuming appropriate smoothness, we have shown that the real part of *every* analytic function f is harmonic. The converse, however, is not true. That is, not every smooth harmonic function $u: D \to \mathbb{R}$ is necessarily the real part of some analytic function. As an example, consider $u(z) = \log |z|$ for $z \in D = \{0 < |z| < 1\}$. It is not hard to show that u is harmonic in D. However, it can also be shown that u does *not* have a harmonic conjugate in D. Compare this to Problem #10 on Assignment #4. The function $u(z) = \log |z|$ for $z \in D = \{\operatorname{Re} z > 0\}$ is harmonic in D and does have a harmonic conjugate in D.

The Cauchy Integral Theorem

Our next goal is to investigate the conditions under which

$$\int_C f(z) \, \mathrm{d}z = 0$$

for a closed contour C.

Theorem 20.3 (Fundamental Theorem of Calculus for Integrals over Closed Contours). Suppose that D is a domain. If f(z) is continuous in D and has an antiderivative F(z) throughout D (i.e., F(z) is analytic in D with F'(z) = f(z) for every $z \in D$), then

$$\int_C f(z) \, \mathrm{d}z = 0$$

for any closed contour C lying entirely in D.

Proof. This follows from the usual Fundamental Theorem of Calculus. Suppose that C is parametrized by z = z(t), $a \leq t \leq b$. The hypothesis that f(z) is continuous in D is necessary for the contour integral

$$\int_C f(z) \, \mathrm{d}z$$

to equal the Riemann integral

$$\int_{a}^{b} f(z(t)) \cdot z'(t) \,\mathrm{d}t$$

The assumption that f has an antiderivative F means that

$$\frac{\mathrm{d}}{\mathrm{d}t}F(z(t)) = F'(z(t)) \cdot z'(t) = f(z(t)) \cdot z'(t).$$

Therefore,

$$\int_C f(z) \,\mathrm{d}z = \int_a^b f(z(t)) \cdot z'(t) \,\mathrm{d}t = \int_a^b \frac{\mathrm{d}}{\mathrm{d}t} F(z(t)) \,\mathrm{d}t = F(z(b)) - F(z(a))$$

by the usual Fundamental Theorem of Calculus. The assumption that C is a closed contour means that z(a) = z(b) which implies F(z(b)) = F(z(a)). Hence,

$$\int_C f(z) \, \mathrm{d}z = 0$$

for any closed contour C lying entirely in D.

Remark. This theorem can apply if D is an annulus and C surrounds the hole.