Lecture \#20: Analyticity of the Complex Logarithm Function

Definition. Suppose that $z \in \mathbb{C} \backslash\{0\}$. We define the principal value of the logarithm of z, denoted $\log z$, to be

$$
\log z=\log |z|+i \operatorname{Arg}(z)
$$

Proposition 20.1. The function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ given by $f(z)=\log z$ is continuous at all z except those along the negative real axis.

Proof. Since $z \mapsto \log |z|$ is clearly continuous for all $z \in \mathbb{C} \backslash\{0\}$ and since $\log z=\log |z|+$ $i \operatorname{Arg}(z)$, the result follows from the fact that $z \mapsto \operatorname{Arg}(z)$ is discontinuous at each point on the nonpositive real axis. That is, let $z=x_{0}+i y$ for some $x_{0}<0$ fixed. If $y \downarrow 0$, then $\operatorname{Arg}(z) \downarrow \pi$, whereas if $y \uparrow 0$, then $\operatorname{Arg}(z) \uparrow-\pi$.

Recall that if $f:(0, \infty) \rightarrow \mathbb{R}$ is given by $f(x)=\log x$, then $f^{\prime}(x)=1 / x$. The same type of formula holds for the principal value of the logarithm, but must be stated very carefully.

Theorem 20.2. The function $z \mapsto \log z$ is analytic in the domain $D=\mathbb{C} \backslash D^{*}$ where

$$
D^{*}=\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0 \text { and } \operatorname{Im}(z)=0\}
$$

and satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \log z=\frac{1}{z}
$$

for $z \in D$.
Proof. Let $w=\log z$. We must show that

$$
\lim _{z \rightarrow z_{0}} \frac{w-w_{0}}{z-z_{0}}
$$

exists and equals $1 / z_{0}$ for every $z_{0} \in D$. However, we know (by definition of $\log z$) that $z=e^{w}$. We also know from Example 15.2 that $f(w)=e^{w}$ is entire with $f^{\prime}(w)=e^{w}$. In other words,

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} w} f(w)\right|_{w=w_{0}}=\left.\frac{\mathrm{d}}{\mathrm{~d} w} e^{w}\right|_{w=w_{0}}=\left.\frac{\mathrm{d} z}{\mathrm{~d} w}\right|_{w=w_{0}}=\lim _{w \rightarrow w_{0}} \frac{z-z_{0}}{w-w_{0}}=e^{w_{0}}=z_{0} \tag{*}
\end{equation*}
$$

The next step is to observe that by continuity (Proposition 20.1), $w \rightarrow w_{0}$ as $z \rightarrow z_{0}$. Hence,

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{w-w_{0}}{z-z_{0}}=\lim _{w \rightarrow w_{0}} \frac{w-w_{0}}{z-z_{0}} . \tag{**}
\end{equation*}
$$

However, compare the right side of $(* *)$ with $(*)$ to conclude

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} z} \log z\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}} \frac{w-w_{0}}{z-z_{0}}=\lim _{w \rightarrow w_{0}} \frac{w-w_{0}}{z-z_{0}}=\lim _{w \rightarrow w_{0}} \frac{1}{\frac{z-z_{0}}{w-w_{0}}}=\frac{1}{z_{0}}
$$

for every $z_{0} \in D$.

Remark. Assuming appropriate smoothness, we have shown that the real part of every analytic function f is harmonic. The converse, however, is not true. That is, not every smooth harmonic function $u: D \rightarrow \mathbb{R}$ is necessarily the real part of some analytic function. As an example, consider $u(z)=\log |z|$ for $z \in D=\{0<|z|<1\}$. It is not hard to show that u is harmonic in D. However, it can also be shown that u does not have a harmonic conjugate in D. Compare this to Problem $\# 10$ on Assignment \#4. The function $u(z)=\log |z|$ for $z \in D=\{\operatorname{Re} z>0\}$ is harmonic in D and does have a harmonic conjugate in D.

The Cauchy Integral Theorem

Our next goal is to investigate the conditions under which

$$
\int_{C} f(z) \mathrm{d} z=0
$$

for a closed contour C.
Theorem 20.3 (Fundamental Theorem of Calculus for Integrals over Closed Contours). Suppose that D is a domain. If $f(z)$ is continuous in D and has an antiderivative $F(z)$ throughout D (i.e., $F(z)$ is analytic in D with $F^{\prime}(z)=f(z)$ for every $z \in D$), then

$$
\int_{C} f(z) \mathrm{d} z=0
$$

for any closed contour C lying entirely in D.
Proof. This follows from the usual Fundamental Theorem of Calculus. Suppose that C is parametrized by $z=z(t), a \leq t \leq b$. The hypothesis that $f(z)$ is continuous in D is necessary for the contour integral

$$
\int_{C} f(z) \mathrm{d} z
$$

to equal the Riemann integral

$$
\int_{a}^{b} f(z(t)) \cdot z^{\prime}(t) \mathrm{d} t
$$

The assumption that f has an antiderivative F means that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(z(t))=F^{\prime}(z(t)) \cdot z^{\prime}(t)=f(z(t)) \cdot z^{\prime}(t) .
$$

Therefore,

$$
\int_{C} f(z) \mathrm{d} z=\int_{a}^{b} f(z(t)) \cdot z^{\prime}(t) \mathrm{d} t=\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} t} F(z(t)) \mathrm{d} t=F(z(b))-F(z(a))
$$

by the usual Fundamental Theorem of Calculus. The assumption that C is a closed contour means that $z(a)=z(b)$ which implies $F(z(b))=F(z(a))$. Hence,

$$
\int_{C} f(z) \mathrm{d} z=0
$$

for any closed contour C lying entirely in D.
Remark. This theorem can apply if D is an annulus and C surrounds the hole.

