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Lecture #17: Applications of the Cauchy-Riemann Equations

Example 17.1. Prove that if r and 6 are polar coordinates, then the functions r" cos(nf)
and r"sin(nf) (where n is a positive integer) are harmonic as functions of = and y.

Solution. Consider 7" cos(nf) and r" sin(n#) where n is a positive integer. The key observa-
tion is that de Moivre’s formula tells us these are the real and imaginary parts, respectively,
of (rcos + irsin@)"; that is, if z = o + iy = re, then
2" = "™ = " cos(nf) + ir" sin(nd).

Hence, let u = r" cos(nf) and v = r™sin(nd). In order to show that u and v are harmonic
as functions of x and y, we can use Example 14.1 which tells us that the real and imaginary
parts of an analytic function are harmonic (assuming the partial derivatives are smooth
enough).

Therefore, we see that if we can show that f(z) = 2" is analytic, we can conclude for free
from Example 14.1 that u = 7" cos(nf) and v = r"sin(nf) are harmonic as functions of x
and y.

In order to prove that f(z) = 2" is analytic, however, we need to show that f'(zy) exists for
all zo € C. Consider

lim f(ZU + AZ) — f(Z[)) — lim (’ZO + A’Z) — %0 )
Az—0 Az Az—0 Az

By the binomial theorem,

(20 + A2)" = Z <n) 2 (Az)Y = 28 T A+ Z (?) 2 (Az),
j=2

=0 \J

and so

(20 + Az)" — 25 N (n> n—j —1
=nz, " + Z )z (Az)Y T
Az = \J

Since 7 — 1 > 0 for 2 < 5 < n, we immediately deduce that

. (20+Az)"—z8_ . n—1 — (n n—j j—1
d T iy e 2 ()8
]:

proving f(z) = 2" is entire with f'(zy) = nz{ ' for all zy € C. In particular, u = Re(z") =
r™ cos(nf) and v = Im(2") = r"sin(nd) are both harmonic as functions of x and y.

o n—1
=Nz,
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The Cauchy-Riemann Equations and Laplace’s Equation in Polar Coordinates

An equivalent way to solve Example 17.1 is to compute ug, + 1y, and vy, + vy, directly for
both u = ™ cos(nf) and v = r" sin(nf). The difficulty with this approach is that v and v, as
written, are functions of  and #, but the partials that we wish to compute are with respect
to x and y. Therefore, we must use the multivariable chain rule to determine w,, ug, v, vg
in terms of u,, u,, v, v,. That is, we will introduce a change of variables

U(r,0) =u(x,y) and V(r,0)=v(z,y)

with = rcosf and y = rsind. Observe that r? = 22 + y? so that 2rr, = 22 which implies

xr  rcosé
Ty = — = = cosf.
r r
Moreover, tan§ = y/z so that sec?d - 0, = —y/z* which implies
0 _ y  ycos’d  rsinfcos’d  sinf
T a2sec?d 2 r2sin r
Similarly,
cos
ry =sinf and 0, =
.

By the chain rule, we now find

Uy = Upry + Uy, = (cos 0)U, + (—r ' sin §) Uy, u, = Uyry +Ugf, = (sin0)U, + (r~" cos 0) Uy,
and

vy = Viry + Vobly = (cos O)V, + (—r ' sin0)Vy, v, = Vir, + Vo, = (sin0)V, + (r~' cos ) Vj.

If we now assume that f(z2) = u(2) +iv(z) = U(r,0) +iV (r,0) is differentiable at 2o = roe?
so that the Cauchy-Riemann equations are satisfied at zy, then

uz(20) = vy(20) and wuy(20) = —v4(20).
This implies
(cos 00)U, (10, 00) — (15" sin 0g)Up (10, 0) = (sin 0)V; (0, 0o) + (rg ' cos ) Va(ro,0o) ()
and
(sin 0p) U, (10, 00) + (15" cos 0)Up(ro, o) = —(cos o) Vi (1o, 80) + (15 sin6p)Va(ro, 0).  (+%)
Simplifying (%) and (*x*) yields
(Un(r0,00) — 15 Vy(r0,00)) cos 8y — (Vi(ro, 00) + 15 Us(r0, 6p)) sinfy = 0 (1)

and

(Vi (70, 00) + 15 Up(r0, 60)) cos b + (Ur(ro,60) — ro " Va(ro, b)) sin g = 0. (1)
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If we then multiple (f) by cosfy and (1) by sin§y, and then add, we obtain
(UT(T(), 90) — 7“0_1‘/9(7’0, 90))(COS2 60 + SiIl2 90) = O

which implies U, (ro,6) = ry ' Vy(ro,0p). On the other hand, if we then multiple (1) by
—sinfy and (1) by cosfy, and then add, we obtain

(Vi(ro, 00) + 15 Ug(r0,60)) (cos? By + sin ) = 0
which implies 75Uy (o, o) = —V;(10, o).

Theorem 17.2. Let z = re. If f(re®®) = U(r,0) + iV (r,0) is differentiable at zo = 1™,
then the Cauchy-Riemann equations in polar coordinates are satisfied at zo; that is,

ou 10V 10U oV

W(TO’Q()) = ’/"_0%(7“0’90> (I’ﬂd T—Oﬁ(ro,eo) = —W(To,eo).

Summary. The Cauchy-Riemann equations in polar coordinates can be remembered as

1 1
U.=-Vy and -Uy= -V,
r r

Example 17.3. Suppose that U(r, ) = r" cos(nf) and V(r,0) = r" sin(nf). We find

U, = nr"" ' cos(nf)

Vo = nr" cos(n)
and

Up = —nr" sin(nd)

V. = nr" !sin(nb)

sothat U, = r~'Vy and 71Uy = —V,.. Hence, U and V satisfy the Cauchy-Riemann equations
in polar coordinates.

We can now use the Cauchy-Riemann equations to derive Laplace’s equation in polar coor-
dinates. (Assume that all second partials exist and are sufficiently smooth so that the mixed
partials are equal.) That is, we know

uy = v, implies rU,=Vy and u, = —v, implies Uy = —rV,

and so taking derivatives with respect to x of the first equation and derivatives with respect
to y of the second equation implies

0= (uz —vy)s + (uy +0)y = (rUp — Vo)o + (Ug + 1V;),.
Now, using the chain rule, we find

(TUT - ‘/9):1: - Ter + T(Urrr:c + Uerex) - (%99$ + ‘/rercc)
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and
(Us +1V,)y = (Usgby + Urory) + 1y Vi + r(Vipry + Vo, 0,).

Adding the previous two terms, using the equality of the mixed partials, and simplifying
implies

roUpr + 115U + (18, + 1)Uy + 0,Ugg = —1, Vi — 11, Vi — (10, — 1) Vig + 0, Vigg. (%)
The next step is to note that

in @ 0
r8x+ry:7’-—sm +sinf =0 and ré’y—rm:r-cos —cosf = 0.
r r
so that (%) becomes
Ter + rracUrr + eyUHO = _ry‘/r - 717”3/‘/;“7“ + 9:1;‘/99
Substituting in ry, 0,, ry, 6,, we conclude
1 1
cos {Ur +rU + —U99:| = —sinf {Vr +rV,, + —‘/99] ) (1)
r r

If, instead, at the beginning of the derivation we had taken derivatives with respect to y of
the first equation and derivatives with respect to = of the second equation, then we would
have found

1 1
cos 0 {V} + 71V, + ;‘/99:| = —sinf {Ur +rU,, + ;U99:| ) (1)

We now multiple (1) by cos @, multiply () by sin#, and add, then we conclude
1
(cos® O + sin? ) [UT +rU., + —U99:| =0
r

and so we finally arrive at Laplace’s equation in polar coordinates

1 1
Urr + _Ur + _2U9¢9 = 0.
r r

Note that we can also conclude immediately that V' satisfies Laplace’s equation in polar
coordinates as well,

1 1
Vie +=Vi+ < Vo =0.
r T
Example 17.4. Suppose that U(r,0) = r" cos(nf). We can now show directly that U is
harmonic. That is,
U, =nr" tcos(nf), U, =n(n—1)r""2cos(nh), Uy = —nr"sin(nb), Up = —n’r" cos(nf)

so that

1 1 1 1
Upr + =U, + —Ugg = n(n — 1)r" 2 cos(nf) + = - nr" ' cos(nf) + — - —n’r" cos(nf)
r r r r

= "2 cos(nf)[n(n — 1) + n — n?|
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