Math 312 Fall 2012 Final Exam — Solutions
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1. Since e* # 0 for all z € C, we can multiply e* + 2¢7* = 3 by e¢* and simplify obtain
e?* — 3¢ + 2 = 0. Notice that €** —3e* +2 = (¢ — 2)(e* — 1) and s0 €** —3e* +2 = 0
iff either e* —2 = 0 or e — 1 = 0. Consider first the equation e* = 1. Since e>™ = 1 for
any k € Z, we conclude that e* — 1 = 0 iff z € {27nki, k € Z}. Now consider ¢* = 2. Since
elos2t2mki — 9 for any k € Z, we conclude that e* —2 = 0 iff 2z € {log2 + 27ki, k € Z}. This
implies that if z € {27ki, k € Z} U {log2 + 2nki, k € Z} = {2nki, log2 + 2nki, k € Z},
then e® 4+ 2e~% = 3. Since we are only interested in those z with |z| < 10, we see that

z € {0, 2mi, —2mi, log2, log2 + 2mi, log2 — 2mi}.

2. Consider the function g(z) = —iz. Since the action of g(z) is rotation clockwise by an
angle of /2, we see that the image of D under ¢g(z) is E = {z : Re(z) < 0, 0 < Im(z) < 7/2}.
Now let f(z) = e® so that w = f(g(z)). The image of D under w is exactly the image of £
under f(z). Observe that we can express F as F ={z=z+iy: 2 <0and 0 <y < 7/2}.
Since e* = %% and x < 0, we conclude that |e*| = e® < 1. Moreover, ¥ for 0 < y < 7/2
describes that part of the unit circle centred at 0 in the first quadrant. Thus, the image of
D in the w-plane is exactly {w € C: |w| < 1, 0 < Arg(w) < 7/2}.

3. (i) We begin by observing that
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(iii) We now observe that
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4. Observe that (2% +1)% = (2 —4)3(z +1)? so that
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has poles of order 3 at z; =i and zy = —i. Note that only 2; is inside C'. Since
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5. Suppose that C' = {|z| = 1} oriented counterclockwise is parametrized by z(6) = €',
0 < 6 < 27. Since 2/(0) = ie? = iz(f), we obtain
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We now observe that
z+ 271 1 1 22+1 i 22+1
— —dz=— 5 dz = - 5 dz.
c10—4(z+z71) iz i Jo z(102 — 422 — 4) 2 Jo2(222 =52+ 2)

2241 2241
f(z) prmng g
2(222-524+2) 2(2z—-1)(2—2)
so that f(z) has simple poles at zp =0, z; = 1/2, and 2z, = 2.
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Notice that only zg = 0 and z; = 1/2 are inside C. Therefore,
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By the residue theorem we obtain
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6. (a) Consider z° —1 = 0. The solutions of this equation are zo = 1, 2y = €*™/5 2 =¢
z3 = €55 and 24 = /%, Since (2 — 1)(2* + 2° + 22 + 2 + 1) = (2° — 1), we conclude that
the roots of (z — 1)(z* + 2% + 22 + 2 + 1) must equal the roots of 25 — 1. Clearly, 2o = 1 is

the root of (z — 1). This means that the four roots of P(z) = 2% + 23 + 2% + 2 + 1 must be
the other four roots of 2° — 1, namely z; = e*™/5, z, = *™/5 67/5 and z4 = €875,
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(b) Notice that we can write
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which is a ratio of polynomials. This means that isolated singular points will occur precisely
where the denominator is 0. Notice that z*(z—1)P(z) has 6 zeros, namely 2y = 1, 2; = e2™/5,
2y = e¥mi/5 6mi/5 87/5 and z; = 0. Now consider the numerator, z(z — 1), which
has zeros at zp = 1 and z;5 = 0. Since the order of the zero at z5 = 1 is the same in both
the numerator and the denominator, we conclude 2y = 1 is a removable singularity. Since
the order of the zero at z5 = 0 is 1 in the numerator and 4 in the denominator, we conclude

that z; = 0 is a pole of order 4 — 1 = 3. Finally, since the zeros of P(z) are not zeros of the
2ri/5 amifs . — 675 and z, — ¢8¥/5 are each
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7. Suppose that f(z) = z%~/*. Observe that z = 0 is an isolated singular point of f(2)
that lies inside C. Therefore, we conclude from the residue theorem that

/C F(2)dx = 27i Res(£(2): 0).

However, since zy = 0 is clearly an essential singularity, the only way to compute Res(f(z);0)
is to determine the Laurent series for f(z) valid for |z| > 0. Now,
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Thus, Res(f(z);0) = §; so that

8. (a) Observe that the Laurent series for h(w) = #2% about the point 0 is
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This tells us that w = 0 is a removable singularity for h(w). Hence, in order for g(w) to be
analytic at w = 0, it must be the case that
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Since ¢g(0) = wg, we conclude that wy = 1.

(b) Observe that if w # 0, then g(w) = 0 if and only if sinw = 0. Since sinw = 0 if and
only if w = k7 for some k € Z, we conclude that g(w) = 0 if and only if w = kn for some
k € Z\ {0}. Since |km| > 3 for any k € Z \ {0}, we conclude that g(w) # 0 for any |w| < 3.

(c) Suppose that f is entire. Fix z with |z] < 1 and consider the function
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defined for any |¢| < 2. As a result of (b), we know that F(() is analytic inside and on the
unit circle C since ¢g(¢ — z) # 0 for any |z| < 1 and || < 2. (Indeed, suppose that |z| < 1
and [(] < 2. If w = ¢ — 2, then by the triangle inequality [( — z] < |¢|+ [2] < 2+ 1= 3.
Thus from (b), we have g(¢ — z) = g(w) # 0.) Therefore, we can apply the Cauchy integral

theorem to conclude ) F(O)
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However, since ¢g(0) = 1 by (a), we find
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Furthermore, if |(| < 2 with { # z, then
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as required.



