
Math 312 Fall 2013 Final Exam – Solutions

1. (a) We have z =
2 + i

i− 1
=

(2 + i)(i+ 1)

(i− 1)(i+ 1)
=

2i+ 2 + i2 + i

i2 − 1
=

3i+ 1

−2
= −1

2
− 3

2
i.

1. (b) Note that 1 + i =
√

2eiπ/4 so that Arg(1 + i) = π/4. This implies z =
1

2
log 2 +

π

4
i.

1. (c) We have z =
√

2eiπ/3 =
√

2 [cos(π/3) + i sin(π/3)] =
1√
2

+

√
3√
2
i.

2. (a) We find ux(x0, y0) = 2(e2y0+eky0) cos(2x0) so that uxx(x0, y0) = −4(e2y0+eky0) sin(2x0)
and uy(x0, y0) = (2e2y0 + keky0) sin(2x0) so that uyy(x0, y0) = (4e2y0 + k2eky0) sin(2x0) which
implies uxx(x0, y0) + uyy(x0, y0) = 0 if and only if k2 − 4 = 0. Thus, the required values of k
are 2 and −2.

2. (b) If k ∈ {−2, 2} and f(z) = u(x, y) + iv(x, y) is assumed to be analytic, then the
Cauchy-Riemann equations imply that v(x, y) satisfies vy(x0, y0) = 2(e2y0 + eky0) cos(2x0)
and vx(x0, y0) = −(2e2y0 + keky0) sin(2x0). From the first equation, we obtain

v(x, y) =

(
e2y +

2

k
eky
)

cos(2x) + C1(x)

and from the second equation, we obtain

v(x, y) =
1

2
(2e2y + keky) cos(2x) + C2(y)

where C1 is a function of x only and C2 is a function of y only. Hence, we obtain the
following.

• If k = −2, then v(x, y) = (e2y − e−2y) cos(2x), and

• if k = 2, then v(x, y) = 2e2y cos(2x),

3. Observe that if z = x + iy, then
f(z)− f(0)

z − 0
=

(z̄)2

z2
=

(
x− iy
x+ iy

)2

. We will now show

that
f(z)− f(0)

z − 0
does not converge as z → 0 by considering two paths approaching 0. First

consider z → 0 along the real axis. Thus,

lim
z→0, y=0

(
x− iy
x+ iy

)2

= lim
x→0, y=0

(
x− iy
x+ iy

)2

= lim
x→0

(x
x

)2
= 1.

Now consider z → 0 along the y = x line. Since

lim
z→0, x=y

(
x− iy
x+ iy

)2

= lim
x→0

(
x− ix
x+ ix

)2

= lim
x→0

(
1− i
1 + i

)2

=

(
1− i
1 + i

)2

= −1,

we conclude that f(z) is not differentiable at z = 0.

(continued)



Remark. If we try to take z → 0 along the imaginary axis, we obtain

lim
z→0, x=0

(
x− iy
x+ iy

)2

= lim
y→0, x=0

(
x− iy
x+ iy

)2

= lim
y→0

(
−iy
iy

)2

= 1.

Thus, this function has the property that the Cauchy-Riemann equations ARE satisfied at
0, but the function is not differentiable at 0.

4. Observe that f(z) =
z − 1

z + 1
=
z + 1− 2

z + 1
= 1− 2

z + 1
= h3 ◦h2 ◦h1(z) where h1(z) = z+1,

h2(z) = 1/z, and h3(z) = 1 − 2z. If D = {z ∈ C : |z| < 1} and D1 = h1(D), then
D1 = {z ∈ C : |z − 1| < 1}. Let D2 = h2(D1). In order to determine D2, suppose that
z ∈ D1 and w = 1/z = u+ iv. Hence,

|z−1| < 1 ⇐⇒ |1/w−1| < 1 ⇐⇒ |1−w| < |w| ⇐⇒ (u−1)2+v2 < u2+v2 ⇐⇒ u > 1/2

and so D2 = {z ∈ C : Re(z) > 1/2}. Finally, let D3 = h3(D2) = f(D) so that

f(D) = {z ∈ C : Re(z) < 0}.

5. (a) Since ez is entire, the Cauchy Integral Formula implies

∫
C

ez

z
dz = 2πie0 = 2πi.

5. (b) If we parametrize C by z(t) = eit, 0 ≤ t ≤ 2π, then∫
C

e|z|

z
dz =

∫ 2π

0

e|e
it|

eit
· ieit dt =

∫ 2π

0

ie1 dt = 2πei.

5. (c) The Laurent series for f(z) = z−1e1/z valid for |z| > 0 is

e1/z

z
=
∞∑
j=0

z−j−1

j!
=

1

z
+

1

z2
+

1

2z3
+ · · · .

This implies that ∫
C

e1/z

z
dz =

∫
C

f(z) dz = 2πiRes(f ; 0) = 2πi.

5. (d) Since f(z) = ze−z is entire, the Cauchy Integral Theorem implies

∫
C

z

ez
dz = 0.

6. (a) Since

f(z) =
sin(z − i)

z(z2 + 1)(z2 − 9)2
=

sin(z − i)
z(z − i)(z + i)(z − 3)2(z + 3)2

,

we conclude that z1 = i is a removable singularity, z2 = 0 is a simple pole, z3 = −i is a
simple pole, z4 = 3 is a pole of order two, and z5 = −3 is a pole of order two.



6. (b) Since only z1, z2, and z3 are inside C, we conclude∫
C

f(z) dz = 2πi [Res(f ; z1) + Res(f ; z2) + Res(f ; z3)] .

Since z1 = i is a removable singularity, Res(f ; z1) = 0. Moreover,

Res(f ; z2) =
sin(z − i)

(z2 + 1)(z2 − 9)2

∣∣∣∣
z=0

=
sin(−i)

81
= −sin(i)

81

and

Res(f ; z3) =
sin(z − i)

z(z − i)(z2 − 9)2

∣∣∣∣
z=−i

=
sin(−2i)

(−i)(−2i)(i2 − 9)2
=

sin(2i)

200

which implies that ∫
C

f(z) dz = 2πi

[
sin(2i)

200
− sin(i)

81

]
.

7. Note that

f(z) =
1 + z

z2 + z6
=

1 + z

z2(1 + z4)
=

1 + z

z2
· 1

1 + z4
.

If |z| > 1, then

1

1 + z4
=

1/z4

1 + 1/z4
=

1

z4

∞∑
j=0

(−1)jz−4j =
∞∑
j=0

(−1)jz−4−4j

so that

f(z) =
1 + z

z2

∞∑
j=0

(−1)jz−4−4j =
∞∑
j=0

(−1)jz−6−4j +
∞∑
j=0

(−1)jz−5−4j

=
[
z−6 − z−10 + z−14 − z−18 + · · ·

]
+
[
z−5 − z−9 + z−13 − z−17 + · · ·

]
= z−5 + z−6 − z−9 − z−10 + z−13 + z−14 − z−17 − z−18 + · · · .

8. If C = {|z| = 1} denotes the unit circle parametrized by z(θ) = eiθ, 0 ≤ θ ≤ 2π, then∫ 2π

0

1

1 + sin2 θ
dθ =

∫
C

1

1 + (z − 1/z)2/(2i)2
· 1

iz
dz = 4i

∫
C

z

(z2 − 1)2 − 4z2
dz.

Note that (z2 − 1)2 − 4z2 is the difference of perfect squares so that

(z2 − 1)2 − 4z2 = (z2 − 1− 2z)(z2 − 1 + 2z).

We now write z2 − 2z − 1 = (z − z1)(z − z2) where z1 = 1 +
√

2 and z2 = 1−
√

2, as well as
z2 + 2z − 1 = (z − z3)(z − z4) where z3 = −1 +

√
2 and z4 = −1−

√
2, and note that only



z2 and z3 are inside C. By the Cauchy Residue Theorem,∫
C

z

(z2 − 1)2 − 4z2
dz =

∫
C

z

(z − z1)(z − z2)(z − z3)(z − z4)
dz

= 2πi

[
z2

(z2 − z1)(z2 − z3)(z2 − z4)
+

z3
(z3 − z1)(z3 − z2)(z3 − z4)

]
= 2πi

[
1−
√

2

(−2
√

2)(2− 2
√

2)(2)
+

−1 +
√

2

(−2)(−2 + 2
√

2)(2
√

2)

]

= 2πi

[
− 1

8
√

2
− 1

8
√

2

]
= − πi

2
√

2

and so ∫ 2π

0

1

1 + sin2 θ
dθ = 4i

∫
C

z

(z2 − 1)2 − 4z2
dz = 4i · − πi

2
√

2
=
√

2 π.

9. The basic error with the reasoning in the problem has to do with the definition of square
root of a complex variable. If x is a non-negative real number, then x1/2 is defined to be the
unique non-negative real number y such that y2 = x. In other words, we define x1/2 =

√
x.

If z is any complex variable which is not purely real with non-negative real part, then z1/2

describes a set, namely the set of all complex variables w such that w2 = z. In fact, there
are always two distinct such values. Thus, the error in the problem is that (−1)1/2 is being
used, on the one hand to represent one of its values, and on the other hand to represent its
other value; that is, the problem incorrectly writes eiπ/2 = (−1)1/2 = e−iπ/2 and deduces the
contradiction instead of writing (−1)1/2 = {eiπ/2, e−iπ/2}.

10. In order to prove that f(z) has an isolated singular point at 0, note that if z 6= 0, then

f(z) =
e1/z sin z

z2
is the ratio of an analytic function to a non-zero analytic function and is

therefore analytic. Hence, f(z) is analytic everywhere except 0 implying that f(z) has an
isolated singular point at 0.

In order to classify the isolated singular point at 0, recall from class that a function f(z) has
a pole of order 2 at 0 if and only if

f(z) =
g(z)

z2

for some analytic function g(z) satisfying g(0) 6= 0. Since

f(z) =
e1/z sin z

z2

and since g(z) = e1/z sin z is not analytic at 0, we conclude immediately that f(z) does
NOT have a pole at 0. This means that 0 is either a removable singlularity or an essential
singularity. In order to determine which type it is, we must consider the Laurent series for



f(z). If |z| > 0, then

sin z

z
= 1− z2

3!
+
z4

5!
− · · · =

∞∑
j=0

(−1)jz2j

(2j + 1)!

and
1

z
e1/z =

1

z
+

1

z2
+

1

2!z3
+ · · · =

∞∑
k=0

1

k!zk+1

so that

f(z) =

[
∞∑
j=0

(−1)jz2j

(2j + 1)!

][
∞∑
k=0

1

k!zk+1

]
.

Suppose now that the Laurent series for f(z) is given by

f(z) =
∞∑

n=−∞

cnz
n.

By definition, f(z) has a removable singularity at 0 if cn = 0 for all n < 0. If cn 6= 0 for only
finitely many n < 0, then f(z) has a pole at 0, whereas if cn 6= 0 for infinitely many n < 0,
then f(z) has an essential singularity at 0. Thus, since we already know that f(z) does NOT
have a pole at 0, if we can show cn 6= 0 for at least one n < 0, then we can conclude that
f(z) has an essential singularity at 0. We will show that c−1 6= 0. Basically, one needs to
multiply the two series together and keep track of which products give a contribution to the
z−1 term. That is,

c−1z
−1 = 1 · 1

z
− z2

3!

1

2!z3
+
z4

5!

1

4!z5
− · · · = z−1

∞∑
j=0

(−1)j

(2j)!(2j + 1)!
.

Since c−1 =
∞∑
j=0

(−1)j

(2j)!(2j + 1)!
6= 0, we conclude that 0 is an essential singularity. Note that

the expression for c−1 is a special case of a Kelvin function, named after Lord Kelvin (of
absolute zero temperature fame), and occurs in the study of cylindrical harmonics.


