Math 312 Fall 2013 Final Exam — Solutions
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1. (a) We have z =

, 1
1. (b) Note that 144 = v/2¢™/ so that Arg(1 + i) = /4. This implies z = 3 log 2 + %2

1. (c) We have = = v26™/% — /3 [cos(r/3) + i sin(r/3)] — % + % i

2. (a) We find u, (9, yo) = 2(e?°+e*0) cos(2xg) so that u, (7o, yo) = —4(e?¥0+eF%0) sin(2x()
and u, (o, yo) = (2€2¥0 + kek¥0) sin(2x0) so that wuy,(To, yo) = (4e*¥0 + k?e*0) sin(2z) which
implies wy, (To, Yo) + Uyy (20, yo) = 0 if and only if k* — 4 = 0. Thus, the required values of k
are 2 and —2.

2. (b) If k£ € {—2,2} and f(z) = u(z,y) + iv(z,y) is assumed to be analytic, then the
Cauchy-Riemann equations imply that v(z,y) satisfies v,(xg,yo) = 2(e*0 + €"0) cos(2x()
and v, (7o, yo) = — (20 + ke*) sin(2x). From the first equation, we obtain

2
v(x,y) = (€2y + Eeky) cos(2x) + Cy(z)
and from the second equation, we obtain
1
v(x,y) = 5(2629 + keM) cos(2x) + Co(y)

where (' is a function of x only and C5 is a function of y only. Hence, we obtain the
following.

o If k = —2, then v(x,y) = (e — e %) cos(2z), and

o if k=2, then v(z,y) = 2¢? cos(2x),

\2 S\ 2
3. Observe that if z = x 4 1y, then f(z) = J(0) = (2) = (:v zy) . We will now show

z—0 22 T+ 1y
i 21500

consider z — 0 along the real axis. Thus,

) T — 1y 2 ) T — 1y 2 ) T\ 2
lim : = lim : = lim (—) =1.
z=0,y=0 \ T + 1y z—0,y=0 \ x + 1y z—=0 \T

Now consider z — 0 along the y = z line. Since

SN2 N2 N 2 N 2

) r— 1y ) T — T ) 1—1 1—1

lim - = lim - = lim - = - =—1,
z=0,2=y \ T + 1Y =0 \ © + 1z =0\ 1+1 141

we conclude that f(z) is not differentiable at z = 0.

does not converge as z — 0 by considering two paths approaching 0. First

(continued)



Remark. If we try to take z — 0 along the imaginary axis, we obtain

i T — 1y 2 _ T — 1y 2 i —1y 2
lim : = lim : =lim|—) =1.
2—0,2=0 \ T + 1Y y—0,2=0 \ T + 1y y—0 Y
Thus, this function has the property that the Cauchy-Riemann equations ARE satisfied at
0, but the function is not differentiable at 0.
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4. Observe that f(z) = z—l— 1= Zl_+ = 1—ﬁ = hgohgyohy(z) where hy(z) = z+1,
ho(z) = 1/z, and hg(z) = 1 —22z. If D = {2z € C : |z|] < 1} and D; = hy(D), then

Dy ={z€ C:|z—1| < 1}. Let Dy = hy(D;). In order to determine D,, suppose that
z € Dy and w=1/z = u+ iv. Hence,

z—1] <1 = [TJw-1] <1 <= |l-w| < |w| = (u—1>+0* <uv*+v* = u>1/2
and so Dy = {z € C: Re(z) > 1/2}. Finally, let D3 = h3(Dy) = f(D) so that

f(D)={z€C:Re(z) <0}

eZ
5. (a) Since €? is entire, the Cauchy Integral Formula implies / — dz = 2mie® = 2mi.
c R

5. (b) If we parametrize C' by z(t) = €, 0 <t < 27, then

el 27 e|e“| . 2m
—dz = / — iett dt = / ie' dt = 2wei.
c < 0 € 0

5. (c) The Laurent series for f(z) = z~te!/# valid for |z| > 0 is

el/z_izjl_1+1+ L
z —j:() gl 2 22 223 '

This implies that

/ o dz = / f(z)dz = 2miRes(f;0) = 2mi.
c c

z

5. (d) Since f(z) = ze™* is entire, the Cauchy Integral Theorem implies Zdz=0.

c €
6. (a) Since
£(2) sin(z — 1) sin(z — 1)
Z) = =
2(22+1)(22 =92 z(z—9)(z+19)(2 —3)%(z + 3)%’
we conclude that z; = 7 is a removable singularity, zo = 0 is a simple pole, 23 = —i is a

simple pole, z4 = 3 is a pole of order two, and z5; = —3 is a pole of order two.



6. (b) Since only zi, 29, and z3 are inside C, we conclude

/C () dz = 2mi [Res(f: 21) + Res(f: 22) + Res(f: 23)]

Since z; = 7 is a removable singularity, Res(f; z;) = 0. Moreover,

L sin(z — 1) _sin(—7)  sin(i)
Res(f; 22) = 2+0(2-92|_, 8 8l
and
Res(f: 23) = sin(z — 1) _ sin(—27) _ sin(27)
T =22 =92, (i) (=20)(2—-9)2 200

which implies that

/C F(2) dz = 2xi [sin(%) B sin(i)] |

200 81
7. Note that
f(z)— 1+ 2 B 1+ 2 _1—1—2' 1
22+26 ZQ(]_ +Z4) 2:2 ].+Z4
If |z| > 1, then
1 1/24 I & L4 e e
124 14+1/24 A2 Y =) (Y
=0 j=0
so that
1+ 2« i —4—4j - i —6—4j = § o —5—4j
F2) = LEE S 1y = 31+ 31
=0 =0 =0

_ [2—6_2—10_’_[14_2—18_'_”'}+ [2_5—2_9+z_13—z_17+--~}
z

=54 =6 _ =9 =10, -13 o —14 1T I8

8. If C = {|z| = 1} denotes the unit circle parametrized by z() = €, 0 < § < 27, then

Toanzg V= c—dz=4i .
o 1+sin’6 c 1+ (2—1/2)2/(2i)% iz o (22 —1)2 — 422
Note that (22 — 1)* — 422 is the difference of perfect squares so that
(22— 1) =422 = (22— 1 - 22)(2* — 1 + 22).

We now write 22 — 2z — 1 = (2 — 21)(2 — 2) where z; = 1 + V2 and 2, = 1 — /2, as well as
22 +22—1=(2—2z3)(2 — 2z4) where z3 = —1 + V2 and z4 = —1 — /2, and note that only



29 and z3 are inside C. By the Cauchy Residue Theorem,

/c CESErEi /c R e e e
= (22 — 21) (22 — 23) (22 — 24) " (23 — 21)(23 — 22) (23 — 2’4)}

= 2m - 1-v2 + “1+v2
(—2v2)(2 = 2v2)(2)  (=2)(=2+ 2v2)(2V2)

1 1}
=2 | ——= — ——=

8v2 82

B iy
2v/2

and so

21 .
1 z T
———df =4 dz=4i-——— =V2m.
/0 1+ sin?6 Z/C(zz—l)Q—élz? S 22 m

9. The basic error with the reasoning in the problem has to do with the definition of square
root of a complex variable. If x is a non-negative real number, then 2'/2 is defined to be the
unique non-negative real number y such that y?> = x. In other words, we define z'/2 = \/x.
If z is any complex variable which is not purely real with non-negative real part, then z'/2
describes a set, namely the set of all complex variables w such that w? = z. In fact, there
are always two distinct such values. Thus, the error in the problem is that (—1)2 is being
used, on the one hand to represent one of its values, and on the other hand to represent its
other value; that is, the problem incorrectly writes ¢™/2 = (—1)1/2 = ¢7"/2 and deduces the
contradiction instead of writing (—1)/2 = {e™/2, ¢~"/2}.

10. In order to prove that f(z) has an isolated singular point at 0, note that if z # 0, then
e'/?sin z
f(z) = ——— is the ratio of an analytic function to a non-zero analytic function and is
z
therefore analytic. Hence, f(z) is analytic everywhere except 0 implying that f(z) has an
isolated singular point at 0.

In order to classify the isolated singular point at 0, recall from class that a function f(z) has
a pole of order 2 at 0 if and only if

for some analytic function g(z) satisfying ¢g(0) # 0. Since

el/% sin 2

f() = ———

z

and since g(z) = e!/#sinz is not analytic at 0, we conclude immediately that f(z) does

NOT have a pole at 0. This means that 0 is either a removable singlularity or an essential
singularity. In order to determine which type it is, we must consider the Laurent series for



f(2). If |z| > 0, then

sin 2 22 -
SRt L RN ra
and
éel/zzé+i+_+ Zklzk—H
so that

r01= |5 G | e

Suppose now that the Laurent series for f(z) is given by

(o)
= E cn 2"

n=—0oo

By definition, f(z) has a removable singularity at 0 if ¢,, = 0 for all n < 0. If ¢, # 0 for only
finitely many n < 0, then f(z) has a pole at 0, whereas if ¢, # 0 for infinitely many n < 0,
then f(z) has an essential singularity at 0. Thus, since we already know that f(z) does NOT
have a pole at 0, if we can show ¢, # 0 for at least one n < 0, then we can conclude that
f(2) has an essential singularity at 0. We will show that ¢_; # 0. Basically, one needs to
multiply the two series together and keep track of which products give a contribution to the
2! term. That is,

1 221 S| - (—1)
oyt =1 - 4 - =t S S
1z P T TR ? ; 2)12j + 1)

Since c_; = jz:; (2])((2%1) # 0, we conclude that 0 is an essential singularity. Note that

the expression for ¢_; is a special case of a Kelvin function, named after Lord Kelvin (of
absolute zero temperature fame), and occurs in the study of cylindrical harmonics.



