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Lecture #22: The Cauchy Integral Formula

Recall that the Cauchy Integral Theorem, Basic Version states that if D is a domain and
f(z) is analytic in D with f

�(z) continuous, then
�

C

f(z) dz = 0

for any closed contour C lying entirely in D having the property that C is continuously
deformable to a point.

We also showed that if C is any closed contour oriented counterclockwise in C and a is inside
C, then �

C

1

z − a
dz = 2πi. (∗)

Our goal now is to derive the celebrated Cauchy Integral Formula which can be viewed as a
generalization of (∗).

Theorem 22.1 (Cauchy Integral Formula). Suppose that D is a domain and that f(z) is
analytic in D with f

�(z) continuous. If C is a closed contour oriented counterclockwise lying
entirely in D having the property that the region surrounded by C is a simply connected
subdomain of D (i.e., if C is continuously deformable to a point) and a is inside C, then

f(a) =
1

2πi

�

C

f(z)

z − a
dz.

Proof. Observe that we can write
�

C

f(z)

z − a
dz =

�

C

f(a)

z − a
dz +

�

C

f(z)− f(a)

z − a
dz = 2πf(a)i+

�

Ca

f(z)− f(a)

z − a
dz

where Ca = {|z − a| = r} oriented counterclockwise since (∗) implies
�

C

f(a)

z − a
dz = f(a)

�

C

1

z − a
dz = 2πf(a)i

and �

C

f(z)− f(a)

z − a
dz =

�

Ca

f(z)− f(a)

z − a
dz

since the integrand
f(z)− f(a)

z − a

is analytic everywhere except at z = a and its derivative is continuous everywhere except
at z = a so that integration over C can be continuously deformed to integration over Ca.
However, if we write

�

C

f(z)

z − a
dz − 2πf(a)i =

�

Ca

f(z)− f(a)

z − a
dz,
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and note that the left side of the previous expression does not depend on r, then we conclude
�

C

f(z)

z − a
dz − 2πf(a)i = lim

r↓0

�

Ca

f(z)− f(a)

z − a
dz.

Hence, the proof will be complete if we can show that

lim
r↓0

�

Ca

f(z)− f(a)

z − a
dz = 0.

To this end, suppose that Mr = max{|f(z) − f(a)|, z on Ca}. Therefore, if z is on Ca =
{|z − a| = r}, then

����
f(z)− f(a)

z − a

���� =
|f(z)− f(a)|

|z − a| =
|f(z)− f(a)|

r
≤ Mr

r

so that
����
�

Ca

f(z)− f(a)

z − a
dz

���� ≤
�

Ca

����
f(z)− f(a)

z − a

���� dz ≤
�

Ca

Mr

r
dz =

Mr

r

�

Ca

1 dz =
Mr

r
�(Ca)

=
Mr

r
· 2πr

= 2πMr

since the arclength of Ca is �(Ca) = 2πr. However, since f(z) is analytic in D, we know that
f(z) is necessarily continuous in D so that

lim
z→a

|f(z)− f(a)| = 0 or, equivalently, lim
r↓0

Mr = 0.

Therefore,

lim
r↓0

����
�

Ca

f(z)− f(a)

z − a
dz

���� ≤ lim
r↓0

(2πMr) = 0

as required.

Example 22.2. Compute
1

2πi

�

C

ze
z

z − i
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.

Solution. Observe that f(z) = ze
z is entire, f �(z) = ze

z + e
z is continuous, and i is inside

C. Therefore, by the Cauchy Integral Formula,

1

2πi

�

C

ze
z

z − i
dz =

1

2πi

�

C

f(z)

z − i
dz = f(i) = ie

i
.

Example 22.3. Compute �

C

ze
z

z + i
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.
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Solution. Observe that f(z) = ze
z is entire, f �(z) = ze

z + e
z is continuous, and −i is inside

C. Therefore, by the Cauchy Integral Formula,

�

C

ze
z

z + i
dz =

�

C

f(z)

z + i
dz = 2πif(−i) = 2πi · −ie

−i = 2πe−i
.

Example 22.4. Compute �

C

ze
z

z2 + 1
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.

Solution. Observe that partial fractions implies

1

z2 + 1
=

1

z2 − i2
=

1

(z + i)(z − i)
=

i/2

z + i
− i/2

z − i

and so �

C

ze
z

z2 + 1
dz =

i

2

�

C

ze
z

z + i
dz − i

2

�

C

ze
z

z − i
dz.

Let f(z) = ze
z. Note that f(z) is entire and f

�(z) = ze
z + e

z is continuous. Since both i

and −i are inside C, the Cauchy Integral Formula implies
�

C

ze
z

z + i
dz = 2πif(−i) = 2πi ·−ie

−i = 2πe−i and

�

C

ze
z

z − i
dz = 2πif(i) = 2πi · iei = −2πei

so that
�

C

ze
z

z2 + 1
dz =

i

2
· 2πe−i − i

2
· −2πei = πie

−i + πie
i = 2πi

�
e
i + e

−i

2

�
= 2πi cos 1.
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Lecture #23: Consequences of the Cauchy Integral Formula

The main result that we will establish today is that an analytic function has derivatives of
all orders. The key to establishing this is to first prove a slightly more general result.

Theorem 23.1. Let g be continuous on the contour C and for each z0 not on C, set

G(z0) =

�

C

g(ζ)

ζ − z0
dζ.

Then G is analytic at z0 with

G
�(z0) =

�

C

g(ζ)

(ζ − z0)2
dζ. (∗)

Remark. Observe that in the statement of the theorem, we do not need to assume that g
is analytic or that C is a closed contour.

Proof. Let z0 not on C be fixed. In order to prove the differentiability of G and the desired
formula for G�(z0), we must show that

lim
∆z→0

G(z0 +∆z)−G(z0)

∆z
=

�

C

g(ζ)

(ζ − z0)2
dζ.

Observe that

G(z0 +∆z)−G(z0)

∆z
=

1

∆z

�

C

g(ζ)

ζ − (z0 +∆z)
− g(ζ)

ζ − z0
dζ

=
1

∆z

�

C

g(ζ)

�
1

ζ − (z0 +∆z)
− 1

ζ − z0

�
dζ

=

�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)
dζ

and so (with a bit of algebra)

G(z0 +∆z)−G(z0)

∆z
−

�

C

g(ζ)

(ζ − z0)2
dζ =

�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)
dζ −

�

C

g(ζ)

(ζ − z0)2
dζ

= ∆z

�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)2
dζ (†)

The next step is to show that
����
�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)2
dζ

����

is bounded.
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To this end, let M = max{|g(ζ)| : ζ ∈ C} be the maximum value of |g(ζ)| on C, and let d =
min{dist(z0, w) : w ∈ C} be the minimal distance from z0 to C. Note that |ζ − z0| ≥ d > 0
for all ζ on C. Without loss of generality, assume that |∆z| < d/2 (since we ultimately care
about ∆z → 0, this is a valid assumption). By the triangle inequality, if ζ ∈ C, then

|ζ − z0 −∆z| ≥ |ζ − z0| − |∆z| ≥ d− d

2
=

d

2
,

and so
����
�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)2
dζ

���� ≤
�

C

����
g(ζ)

(ζ − z0 −∆z)(ζ − z0)2

���� dζ ≤ M

d
2 · d2

�

C

1 dζ

=
2M�(C)

d3

where �(C) < ∞ is the arclength of the contour C. Hence, considering (†), we find

lim
∆z→0

����
G(z0 +∆z)−G(z0)

∆z
−

�

C

g(ζ)

(ζ − z0)2
dζ

���� = lim
∆z→0

����∆z

�

C

g(ζ)

(ζ − z0 −∆z)(ζ − z0)2
dζ

����

≤ 2M�(C)

d3
lim
∆z→0

|∆z|

= 0

so that (∗) holds. Note that we have proved G(z0) is differentiable at z0 �∈ C for z0 fixed.
Since z0 was arbitrary, we conclude that G(z0) is differentiable at any z0 �∈ C implying that
G is analytic at z0 �∈ C as required.

It is important to note that exactly the same method of proof yields the following result.

Corollary 23.2. Let g be continuous on the contour C and for each z0 not on C, set

H(z0) =

�

C

g(ζ)

(ζ − z0)n
dζ

where n is a positive integer. Then H is analytic at z0 with

H
�(z0) = n

�

C

g(ζ)

(ζ − z0)n+1
dζ. (∗∗)

Now we make a very important observation that follows immediately from Theorem 23.1
and Corollary 23.2.

Theorem 23.3. If f(z) is analytic in a domain D, then all of its derivatives f
�(z), f ��(z),

f
���(z), . . . exist and are themselves analytic.

Remark. This theorem is remarkable because it is unique to complex analysis. The analogue
for real-valued functions is not true. For example, f(x) = 9x5/3 for x ∈ R is differentiable
for all x, but its derivative f �(x) = 15x2/3 is not differentiable at x = 0 (i.e., f ��(x) = 10x−1/3

does not exist when x = 0).

23–2



Moreover, if the function in the statement of Theorem 23.1 happens to be analytic and
C happens to be a closed contour oriented counterclockwise, then we arrive at the follow-
ing important theorem which might be called the General Version of the Cauchy Integral
Formula.

Theorem 23.4 (Cauchy Integral Formula, General Version). Suppose that f(z) is analytic
inside and on a simply closed contour C oriented counterclockwise. If z is any point inside
C, then

f
(n)(z) =

n!

2πi

�

C

f(ζ)

(ζ − z)n+1
dζ,

n = 1, 2, 3, . . ..

For the purposes of computations, it is usually more convenient to write the General Version
of the Cauchy Integral Formula as follows.

Corollary 23.5. Suppose that f(z) is analytic inside and on a simply closed contour C

oriented counterclockwise. If a is any point inside C, then
�

C

f(z)

(z − a)m
dz =

2πif (m−1)(a)

(m− 1)!
.

Example 23.6. Compute �

C

e
5z

(z − i)3
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.

Solution. Let f(z) = e
5z so that f(z) is entire, and let a = i which is inside C. Therefore,

�

C

e
5z

(z − i)3
dz =

2πif ��(i)

2!
= 25πie5i

since f
��(z) = 25e5z.

Applications to Harmonic Functions

Suppose that f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is analytic in a domain D. From
Theorem 23.3 we know that all of the derivatives of f are also analytic in D. In particular,
this implies that all the partials of u and v of all orders are continuous. This means that we
can replace Example 13.9 and Proposition 16.2 with the following.

Theorem 23.7. If f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is analytic in a domain D, then
u = u(x, y) is harmonic in D so that

uxx(x0, y0) + uyy(x0, y0) = 0

for all (x0, y0) ∈ D, and v = v(x, y) is harmonic in D so that

vxx(x0, y0) + vyy(x0, y0) = 0

for all (x0, y0) ∈ D.
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Proof. Since f(z) = u(z) + iv(z) is analytic at z0 ∈ D, we know

f
�(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0).

By Theorem 23.3 we know that all of the derivatives of f are also analytic in D and so the
Cauchy-Riemann equations for f � imply

f
��(z0) = uxx(z0) + ivxx(z0) = vyx(z0)− iuyx(z0)

and
f
��(z0) = vxy(z0)− iuxy(z0) = −uyy(z0)− iyyy(z0).

In particular, we obtain uxy = uyx, vxy = vyx, and

uxx(z0) + uyy(z0) = 0 and vxx(z0) + vyy(z0) = 0

so that u and v are harmonic at z0 ∈ D as required.

Suppose that C = CR = {|z| = R} is the circle of radius R > 0 centred at 0 oriented
counterclockwise. We know that if f(z) is analytic inside CR, then

f(z) =
1

2πi

�

CR

f(ζ)

ζ − z
dζ

for |z| < R. Moreover, we know that

u(x, y) = u(z) = Re(f(z))

is harmonic inside CR. Thus, we want to determine an expression for

Re(f(z)) = Re

�
1

2πi

�

CR

f(ζ)

ζ − z
dζ

�
.

The trick to doing so is to consider the function

g(ζ) =
f(ζ)z̄

R2 − ζz̄

which is an analytic function of ζ inside and on CR. (Note that the denominator, as a
function of ζ, is never 0. Why?) Hence, by the Cauchy Integral Theorem,

�

CR

g(ζ) dζ = 0 or, equivalently,
1

2πi

�

CR

f(ζ)z̄

R2 − ζz̄
dζ = 0.

Therefore, if we add this 0 to f(z) we obtain,

f(z) =
1

2πi

�

CR

f(ζ)

ζ − z
dζ +

1

2πi

�

CR

f(ζ)z̄

R2 − ζz̄
dζ =

1

2πi

�

CR

f(ζ)

ζ − z
+

f(ζ)z̄

R2 − ζz̄
dζ

=
1

2πi

�

CR

�
1

ζ − z
+

z̄

R2 − ζz̄

�
f(ζ) dζ

=
1

2πi

�

CR

R
2 − |z|2

(ζ − z)(R2 − ζz̄)
f(ζ) dζ.
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If we now parametrize CR by ζ = Re
it, 0 ≤ t ≤ 2π, then we obtain

f(z) =
1

2πi

� 2π

0

R
2 − |z|2

(Reit − z)(R2 −Reitz̄)
f(Re

it) · iRe
it dt

=
R

2 − |z|2

2π

� 2π

0

f(Re
it)

(Reit − z)(Re−it − z̄)
dt

=
R

2 − |z|2

2π

� 2π

0

f(Re
it)

|Reit − z|2 dt.

If we now write the analytic function f(z) as f(z) = u(z) + iv(z), and then write z = re
iθ

as the polar form of z, we obtain

Re

�
f(Re

it)

|Reit − z|2

�
= Re

�
u(Re

it) + iv(Re
it)

|Reit − reiθ|2

�
=

u(Re
it)

R2 + r2 − 2rR cos(t− θ)
.

Thus, we conclude

u(z) = u(reiθ) =
R

2 − r
2

2π

� 2π

0

u(Re
it)

R2 + r2 − 2rR cos(t− θ)
dt

is harmonic for z = re
iθ with |z| = r < R.

Example 23.8. As an example, observe that if z = 0 and R = 1, then

u(0) =
1

2π

� 2π

0

u(eit) dt

which is sometimes called the circumferential mean value theorem. This result also has a
probabilistic interpretation. The value of the harmonic function at the centre of the unit
disk is the uniform average of the values of that function around the unit circle.
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Lecture #24: Applications to Harmonic Functions

We know from Theorem 23.7 that if a function f(z) is analytic in a domain D, then its real
part is harmonic in D. We will now prove a partial converse, namely that if a function u

is harmonic in a simply connected domain D, then there is an analytic function in D whose
real part is u.

Theorem 24.1. Suppose that D is a simply connected domain. If u = u(z) = u(x, y) is
harmonic in D, then there is a function f(z) which is analytic in D with Re(f(z)) = u(z).

Proof. Suppose that u is harmonic in D so that, by assumption, the second partials uxx, uyy,
and uxy = uyx are continuous in D, and

uxx(z0) + uyy(z0) = 0

for every z0 ∈ D. Suppose that we now set

g(z) = ux(z)− iuy(z).

Observe that g satisfies the Cauchy-Riemann equations in D; that is,

∂

∂x
Re(g(z)) =

∂

∂x
ux(z) = uxx(z) = −uyy(z) =

∂

∂y
(−uy(z)) =

∂

∂y
Im(g(z))

using the fact that uxx + uyy = 0 and

∂

∂y
Re(g(z)) =

∂

∂y
ux(z) = uxy(z) = uyx(z) =

∂

∂x
(uy(z)) = − ∂

∂x
Im(g(z))

using the fact that uxy = uyx. Since the partials of u are continuous, we conclude from
Theorem 13.8 that g(z) is analytic in D. Therefore, we conclude there exists an analytic
function G(z) such that G�(z) = g(z). If we write G(z) = ϕ(z) + iψ(z), then G(z) satisfies
the Cauchy-Riemann equations (since G(z) is analytic) so that ϕx(z) = ψy(z) and ϕy(z) =
−ψx(z). Moreover,

G
�(z) = ϕx(z) + iψx(z) = ϕx(z)− iϕy(z)

so that G�(z) = g(z) implies

ϕx(z)− iϕy(z) = ux(z)− iuy(z).

That is, ux(z) = ϕx(z) and uy(z) = ϕy(z). This means that u−ϕ = c for some real constant
c. Hence, the required analytic function f(z) is

f(z) = G(z) + c

and the proof is complete.
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We can now prove a very interesting property of harmonic functions known as the Maximum
Principle. Suppose that u = u(z) = u(x, y) is harmonic in a simply connected domain D.
Let f(z) = u(z) + iv(z) be an analytic function in D whose existence is guaranteed by
Theorem 24.1. If we now consider the function e

f(z), then we observe that

|ef(z)| = |eu(z)+iv(z)| = |eu(z)||eiv(z)| = e
u(z)

since |eiv(z)| = 1 and e
u(z)

> 0. The fact that the exponential is a monotonically increasing
function of a real variable implies that the maximum points of u(z) must coincide with the
maximum points of the modulus of the analytic function e

f(z).

Theorem 24.2 (Maximum Principle for Harmonic Functions). If u = u(x, y) is harmonic
in a simply connected domain D and u(z) achieves its maximum value at some point z0 in
D, then u(z) is constant in D.

To state the theorem in slightly different language, a harmonic function u(z) cannot achieve
its maximum at an interior point z0 ∈ D unless u(z) is constant.

Of course, the minimum points of u(z) are just the maximum points of −u(z). This means
that we also have a minimum principle for harmonic functions.

Theorem 24.3 (Minimum Principle for Harmonic Functions). If u = u(x, y) is harmonic
in a simply connected domain D and u(z) achieves its minimum value at some point z0 in
D, then u(z) is constant in D.

Combining these results, we arrive at the following theorem.

Theorem 24.4. A function u(x, y) that is harmonic in a bounded simply connected domain
and continuous up to and including the boundary attains its maximum and minimum values
on the boundary.
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Supplement: The Dirichlet Problem

Let D be a domain and suppose that g(z) for z ∈ C = ∂D is a given continuous function.
The Dirichlet Problem for D is to find a function u(z) = u(x, y) that is continuous on
D = D ∪ C, harmonic in D, and satisfies u(z) = g(z) for z ∈ C.

In the case when D is the simply connected domain D = {|z| < R}, we can solve the
Dirichlet Problem. We know from last lecture that

u(z) = u(reiθ) =
R

2 − r
2

2π

� 2π

0

u(Re
it)

R2 + r2 − 2rR cos(t− θ)
dt (∗)

is harmonic for z = re
iθ with |z| = r < R. We now conclude from Theorem 24.1 that if u(z)

is harmonic in D = {|z| < R}, then u(z) can be represented by (∗).

Example 24.5. Show

1

2π

� 2π

0

R
2 − r

2

R2 + r2 − 2rR cos(t− θ)
dt = 1.

Solution. The function u(z) = 1 is clearly harmonic in D = {|z| < R} so substituting u = 1
into (∗) yields

1

2π

� 2π

0

R
2 − r

2

R2 + r2 − 2rR cos(t− θ)
dt = 1.

If we also want u(z) = g(z) for z ∈ CR = ∂D, or equivalently, u(Re
it) = g(Re

it), 0 ≤ t ≤ 2π,
then we guess that

u(z) =






R
2 − r

2

2π

� 2π

0

g(Re
it)

R2 + r2 − 2rR cos(t− θ)
dt, for z = re

iθ with |z| = r < R,

g(z), for z = Re
iθ
,

is the desired function.

Note that u(z) has the properties that u(z) is harmonic in D, continuous in D, and satisfies
u(z) = g(z) for z ∈ C. By assumption, g(z) is continuous on C. This means that u(z)
is continuous both in D and on C. However, we do not know that u(z) is continuous on
D = D ∪ C since we have not verified that

lim
z0→z, |z0|<|z|=R

u(z0) = g(z),

or, equivalently, that

lim
r↑R

R
2 − r

2

2π

� 2π

0

g(Re
it)

R2 + r2 − 2rR cos(t− θ)
dt = g(Re

iθ).

Without loss of generality, assume that R = 1 and θ = 0 so that we must show

lim
r↑1

1− r
2

2π

� 2π

0

g(eit)

1 + r2 − 2r cos t
dt = g(1).
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Unfortunately, a completely rigorous proof of this fact is beyond the scope of Math 312. We
can, however, give the correct intuition for why it is true. Observe that

1

2π
lim
r↑1

1− r
2

1 + r2 − 2r cos t

depends on the value of t ∈ [0, 2π]. There are two possibilities: (i) if t = 0 or t = 2π, then
cos t = 1 so that

1

2π
lim
r↑1

1− r
2

1 + r2 − 2r
= ∞,

and (ii) if 0 < t < 2π, then | cos t| < 1 so that 1 + r
2 − 2r cos t �= 0 for r sufficiently close to

1 implying that
1

2π
lim
r↑1

1− r
2

1 + r2 − 2r cos t
= 0.

The Dirac delta “function” is sometimes used to describe this limit. Note that the Dirac
delta function is not a function in the usual sense but rather a generalized function or
tempered distributions ; as such, the following formulas, though suggestive, are not meaningful
mathematically. Let δ0(t) have the properties that

δ0(t) =

�
0, t �= 0,

+∞, t = 0,

and � ∞

−∞
δ0(t) dt = 1. (†)

That is, we have
1

2π

1− r
2

1 + r2 − 2r cos t
→ δ0(t)

for 0 ≤ t < 2π as r ↑ 1. Note that, as a result of Example 24.5, the factor of 2π is necessary
for (†) to hold. One useful identity involving the Dirac delta function is that if h(t), t ∈ R,
is a real-valued function, then

� ∞

−∞
δ0(t)h(t) dt = h(0).

Thus, assuming that we can interchange limits and integrals, we arrive at

lim
r↑1

1− r
2

2π

� 2π

0

g(eit)

1 + r2 − 2r cos t
dt = lim

r↑1

� 2π

0

1

2π

1− r
2

1 + r2 − 2r cos t
g(eit) dt

=

� 2π

0

lim
r↑1

�
1

2π

1− r
2

1 + r2 − 2r cos t
g(eit)

�
dt

=

� 2π

0

g(eit)

�
lim
r↑1

1

2π

1− r
2

1 + r2 − 2r cos t

�
dt

=

� 2π

0

g(eit)δ0(t) dt

= g(ei0) = g(1).

as required.
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Finally, we should note that the integrating kernel

1

2π

R
2 − r

2

R2 + r2 − 2rR cos(t− θ)

has a special name. It is the Poisson kernel ; that is, if z = re
iθ ∈ D and w = Re

it ∈ C = ∂D,
then

P (w; z) =
1

2π

|w|2 − |z|2

|w − z|2 or, equivalently, P (R, t; r, θ) =
1

2π

R
2 − r

2

R2 + r2 − 2rR cos(t− θ)
.

Thus, the solution to the Dirichlet problem for {|z| < R} subject to boundary conditions
g(Re

it) can be expressed as

u(reiθ) =

� 2π

0

P (R, t; r, θ)g(Re
it) dt.

This representation of u(z) is often called Poisson’s integral formula.

Remark. Note that we have introduced the Poisson kernel from a purely analytic point-of-
view. However, as a result of Exercise 24.5 we can view the Poisson kernel as a probability
density function on the boundary of the disk of radius R. That is, P (R, t; r, θ) ≥ 0 and
satisfies � 2π

0

P (R, t; r, θ) dt = 1.

Moreover, it turns out that Brownian motion and the Poisson kernel are intimately con-
nected. The density of the first exit from the disk of radius R by two dimensional Brownian
motion started at the interior point z = re

iθ is exactly P (R, t; r, θ). Although the Poisson
kernel has been studied for over 150 years, and the relationship between Brownian motion
and the Poisson kernel has been understood for over 60 years, the Poisson kernel is still
vital for modern mathematics. In fact, the Poisson kernel plays a significant role in the
Fields Medal winning work of Wendelin Werner (2006) and Stas Smirnov (2010) on the
Schramm-Loewner evolution.
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Lecture #25: Taylor Series

Our primary goal for today is to prove that if f(z) is an analytic function in a domain
D, then f(z) can be expanded in a Taylor series about any point a ∈ D. Moreover, the
Taylor series for f(z) converges uniformly to f(z) for any z in a closed disk centred at a and
contained entirely in D.

Theorem 25.1. Suppose that f(z) is analytic in the disk {|z− a| < R}. Then the sequence
of Taylor polynomials for f(z) about the point a, namely

Tn(z; f, a) = f(a)+f
�(a)(z−a)+

f
��(a)

2!
(z−a)2+ · · ·+ f

(n)(a)

n!
(z−a)n =

n�

j=0

f
(j)(a)

j!
(z−a)j,

converges to f(z) for all z in this disk. Furthermore, the convergence is uniform in any
closed subdisk {|z − a| ≤ R

�
< R}. In particular, if f(z) is analytic in {|z − a| < R}, then

f(z) =
∞�

j=0

f
(j)(a)

j!
(z − a)j. (1)

We call (1) the Taylor series for f(z) about the point a.

Proof. It is sufficient to prove uniform convergence in every subdisk {|z−a| ≤ R
�
< R}. Set

R
�� = (R+R

�)/2 and consider the closed contour C = {|z− a| = R
��} oriented counterclock-

wise. By the Cauchy Integral Formula,

f(z) =
1

2πi

�

C

f(ζ)

ζ − z
dζ. (∗)

Observe that

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a

1

1−
�

z−a
ζ−a

� =
1

ζ − a

1

1− w
where w =

�
z − a

ζ − a

�

and so using the fact that

1− w
n+1

1− w
= 1 + w + w

2 + · · ·+ w
n or equivalently

1

1− w
= 1 + w + · · ·+ w

n +
w

n+1

1− w
,

we conclude

1

1−
�

z−a
ζ−a

� = 1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+

�
z−a
ζ−a

�n+1

1−
�

z−a
ζ−a

�

= 1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
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and
1

ζ − z
=

1

ζ − a

�
1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
�
. (∗∗)

Substituting (∗∗) into (∗) we conclude

f(z) =
1

2πi

�

C

f(ζ)

ζ − a

�
1 +

�
z − a

ζ − a

�
+ · · ·+

�
z − a

ζ − a

�n

+
ζ − a

ζ − z

�
z − a

ζ − a

�n+1
�
dζ

=
1

2πi

�

C

f(ζ)

ζ − a
dζ +

(z − a)

2πi

�

C

f(ζ)

(ζ − a)2
dζ + · · ·+ (z − a)n

2πi

�

C

f(ζ)

(ζ − a)n+1
dζ

+
(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ.

However, from the Cauchy Integral Formula, we know

1

2πi

�

C

f(ζ)

ζ − a
dζ = f(a),

1

2πi

�

C

f(ζ)

(ζ − a)2
dζ = f

�(a),
1

2πi

�

C

f(ζ)

(ζ − a)3
dζ =

f
��(a)

2!
,

and in general
1

2πi

�

C

f(ζ)

(ζ − a)j+1
dζ =

f
(j)(a)

j!

so that

f(z) = f(a) + f
�(a)(z − a) + · · ·+ f

(n)(a)

n!
(z − a)n +

(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ

= Tn(z; f, a) +Rn(z; f, a).

Thus, we see that in order to show that Tn(z; f, a) converges to f(z) uniformly for |z−a| ≤ R
�,

it suffices to show that Rn(z; f, a) converges to 0 uniformly for |z − a| ≤ R
�. Suppose,

therefore, that |z − a| ≤ R
� and |ζ − a| = R

�� where R
�� = (R + R

�)/2 as before. By the
triangle inequality,

|ζ − z| ≥ R
�� −R

� =
R +R

�

2
−R

� =
R−R

�

2
,

and so

|Rn(z; f, a)| =
����
(z − a)n+1

2πi

�

C

f(ζ)

(ζ − z)(ζ − a)n+1
dζ

���� ≤
1

2π

�

C

����
f(ζ)(z − a)n+1

(ζ − z)(ζ − a)n+1

���� dζ

≤ 1

2π

�

C

|f(ζ)|(R�)n+1

(R��)n+1(R−R�)/2
dζ

≤ 1

π
max
ζ∈C

|f(ζ)|
�
R

�

R��

�n+1 1

R−R� �(C)

where �(C) = 2πR�� is the arclength of C. That is, after some simplification, we obtain

|Rn(z; f, a)| ≤
�

2R�

R +R�

�n 2R�

R−R� max
ζ∈C

|f(ζ)|.
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Notice that the right side of the previous inequality is independent of z. Since 2R�
< R+R

�,
the right side can be made less than any � > 0 by taking n sufficiently large. This gives the
required uniform convergence.

Example 25.2. Find the Taylor series for f(z) = e
z about a = 0.

Solution. Since f (n)(z) = e
z so that f (n)(0) = 1 for all non-negative integers n, we conclude

e
z = 1 + z +

z
2

2!
+

z
3

3!
+ · · · =

∞�

j=0

z
j

j!

for every z ∈ C.

Example 25.3. Find the Taylor series for both f1(z) = sin z and f2(z) = cos z about a = 0,
and then show that the Taylor series for eiz equals the sum of the Taylor series for cos z and
i sin z.

Solution. Observe that f �
1(z) = cos z = f2(z) and f

�
2(z) = − sin z = −f1(z). Since cos 0 = 1

and sin 0 = 0, we obtain

sin z = z − z
3

3!
+

z
5

5!
− z

7

7!
+ · · · =

∞�

j=0

(−1)j
z
2j+1

(2j + 1)!

and

cos z = 1− z
2

2!
+

z
4

4!
− z

6

6!
+ · · · =

∞�

j=0

(−1)j
z
2j

(2j)!

for every z ∈ C. Observe that

e
iz = 1 + (iz) +

(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+

(iz)6

6!
+ · · ·

=

�
1 +

(iz)2

2!
+

(iz)4

4!
+

(iz)6

6!
+ · · ·

�
+

�
iz +

(iz)3

3!
+

(iz)5

5!
+

(iz)7

7!
+ · · ·

�

=

�
1− z

2

2!
+

z
4

4!
− z

6

6!
+ · · ·

�
+ i

�
z +

i
2
z
3

3!
+

i
4
z
5

5!
+

i
6
z
7

7!
+ · · ·

�

=

�
1− z

2

2!
+

z
4

4!
− z

6

6!
+ · · ·

�
+ i

�
z − z

3

3!
+

z
5

5!
− z

7

7!
+ · · ·

�

= cos z + i sin z

as expected. It is worth noting that term-by-term manipulations of the sum of Taylor series
are justified by Theorem 25.1 since the Taylor series involved converge uniformly in closed
disks about the point a = 0.

Remark. Sometimes the phrase Maclaurin series is used in place of Taylor series when
a = 0.

Theorem 25.4. If f(z) is analytic at z0, then the Taylor series for f �(z) at z0 can be obtained
by termwise differentiation of the Taylor series for f(z) about z0 and converges in the same
disk as the Taylor series for f(z).
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Proof. Since f(z) is analytic at z0, the Taylor series for f(z) about z0 is given by

f(z) =
∞�

j=0

f
(j)(z0)

j!
(z − z0)

j
.

By termwise differentiation, we obtain

f
�(z) =

∞�

j=0

j
f
(j)(z0)

j!
(z − z0)

j−1 =
∞�

j=1

f
(j)(z0)

(j − 1)!
(z − z0)

j−1
. (∗)

Suppose now that g(z) = f
�(z). By Theorem 23.3, we know that g(z) is analytic at z0 so

that its Taylor series is

g(z) =
∞�

j=0

g
(j)(z0)

j!
(z − z0)

j
.

However, g(j)(z0) = f
(j+1)(z0) so that

f
�(z) = g(z) =

∞�

j=0

g
(j)(z0)

j!
(z − z0)

j =
∞�

j=0

f
(j+1)(z0)

j!
(z − z0)

j
. (∗∗)

But by a change of index, it is clear that (∗) and (∗∗) are equal as required.
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Lecture #26: Taylor Series and Isolated Singularities

Recall from last class that if f(z) is analytic at a, then

f(z) =
∞�

j=0

f
j(a)

j!
(z − a)j

for all z in some neighbourhood of a. This neighbourhood, denoted by {|z − a| < R}, is
called the disk of convergence of the Taylor series for f(z).

Example 26.1. We know from Lecture #5 that

1

1− z
= 1 + z + z

2 + z
3 + · · ·

for |z| < 1. Since (1− z)−1 is analytic for |z| < 1, we conclude this must be its Taylor series
expansion about a = 0. Moreover, since | − z

2| < 1 whenever |z| < 1, we find

1

1 + z2
= 1 + (−z

2) + (−z
2)2 + (−z

2)3 + · · · = 1− z
2 + z

4 − z
6 + z

8 − z
10 + · · ·

for |z| < 1. Observe now that
d

dz
arctan z =

1

1 + z2
.

Consequently we can use Theorem 25.4, which tells us that the derivative of an analytic
function f(z) can be obtained by termwise differentiation of the Taylor series of f(z), to
conclude that the Taylor series expansion about 0 for arctan z must be

arctan z = z − z
3

3
+

z
5

5
− z

7

7
+ · · ·

for |z| < 1 since

d

dz
arctan z =

d

dz

�
z − z

3

3
+

z
5

5
− z

7

7
+ · · ·

�
= 1− z

2 + z
4 − z

6 + z
8 − z

10 + · · · = 1

1 + z2
.

We can now recover the famous Leibniz formula for π from 1682; that is, since arctan(1) =
π/4, we find

π

4
= arctan(1) = 1− 1

3
+

1

5
− 1

7
+ · · · ,

or equivalently,

π = 4
∞�

j=0

(−1)j

2j + 1
.
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Observe that in the last example we obtained the Taylor series for

1

1 + z2

by formally plugging −z
2 into the Taylor series for

1

1− z
.

Suppose that we try do the same thing with a point at which the Taylor series is not analytic.
For instance, we know that

e
z = 1 + z +

z
2

2!
+

z
3

3!
+ · · ·

for all z ∈ C. However, is it true that

e
1/z = 1 +

1

z
+

1

2!z2!
+

1

3!z3
+ · · · ,

at least for z �= 0? Our goal is to now develop the theory of Laurent series which will provide
us with the means to understand the series expansion for e1/z given above.

Consider again the function e
1/z. Observe that the point z = 0 is special because it is the

only point at which e
1/z fails to be analytic. We call such a point an isolated singularity.

Definition. A point z0 is called an isolated singular point of f(z) if f(z) is not analytic at
z0 but is analytic at all points in some small neighbourhood of z0.

Example 26.2. If f(z) = e
1/z, then z = 0 is an isolated singular point of f(z).

Example 26.3. If

f(z) =
1

z
,

then z0 = 0 is an isolated singular point of f(z).

Example 26.4. If

f(z) = csc z =
1

sin z
,

then f(z) has isolated singular points at z = nπ for n ∈ Z.

Example 26.5. If

f(z) =
1

sin(1/z)
,

then f(z) has isolated singular points at those points for which sin(1/z) = 0, namely

1

z
= nπ or equivalently z =

1

nπ

for n = ±1,±2,±3, . . .. Note that z = 0 is not an isolated singular point since there are
points of the form 1/(nπ) arbitrarily close to 0 for n sufficiently large. In other words, 0 is
a cluster point or an accumulation point of the sequence of isolated singular points 1/(nπ),
n = 1,−1, 2,−2, 3,−3, . . .
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The basic idea is as follows. For a function f(z) analytic for |z − z0| < R, we have

f(z) =
∞�

j=0

aj(z − z0)
j
.

However, if a function is analytic in an annulus only, say r < |z − z0| < R (with r = 0 and
R = ∞ allowed), then our expansion will have negative powers of (z − z0); for example,

e
1/z = 1 +

1

z
+

1

2!z2!
+

1

3!z3
+ · · · .

Example 26.6. Determine a series expansion for

f(z) =
1 + 2z

z2 + z3

in powers of z.

Solution. Recall that
1

1 + z
= 1− z + z

2 − z
3 + · · · .

Hence,

f(z) =
1 + 2z

z2(1 + z)
=

1 + 2z

z2

1

1 + z
=

1 + 2z

z2

�
1− z + z

2 − z
3 + · · ·

�

=
1

z2

��
1− z + z

2 − z
3 + · · ·

�
+ 2z

�
1− z + z

2 − z
3 + · · ·

��

=
1

z2

�
1 + z − z

2 + z
3 − z

4 + · · ·
�

=
1

z2
+

1

z
− 1 + z − z

2 + · · · .

This expansion is the so-called Laurent series expansion of f(z) about z0 = 0. The next
several lectures will be devoted to the development of the theory of Laurent series. Here is
one important use of the series expansion just determined.

Example 26.7. Suppose that C = {|z| = 1/2} oriented counterclockwise. Compute
�

C

1 + 2z

z2 + z3
dz.

Solution. Assuming that

1 + 2z

z2 + z3
=

1

z2
+

1

z
− 1 + z − z

2 + · · · ,

we obtain
�

C

1 + 2z

z2 + z3
dz =

�

C

�
1

z2
+

1

z
− 1 + z − z

2 + · · ·
�

dz

=

�

C

1

z2
dz +

�

C

1

z
dz −

�

C

1 dz +

�

C

z dz −
�

C

z
2 dz + · · ·

= 0 + 2πi+ 0 + 0 + 0 + · · ·
= 2πi.
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Lecture #27: Laurent Series

Recall from Lecture #26 that we considered the function

f(z) =
1 + 2z

z2 + z3

and we formally manipulated f(z) to obtain the infinite expansion

f(z) =
1

z2
+

1

z
− 1 + z − z

2 + · · · .

Observe that f(z) is analytic in the annulus 0 < |z| < 1. Does

1 + 2z

z2 + z3
=

1

z2
+

1

z
− 1 + z − z

2 + · · ·

for all 0 < |z| < 1? The answer turns out to be yes. Thus, our goal for today is to prove that
if a function f(z) is analytic in an annulus, then it has an infinite series expansion which
converges for all z in the annulus. This expansion is known as the Laurent series for f(z).

Theorem 27.1. Suppose that f(z) is analytic in the annulus r < |z − z0| < R (with r = 0
and R = ∞ allowed). Then f(z) can be represented as

f(z) =
∞�

j=0

aj(z − z0)
j +

∞�

j=1

a−j(z − z0)
−j (∗)

where

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ, j = 0,±1,±2, . . . ,

and C is any closed contour oriented counterclockwise that surrounds z0 and lies entirely in
the annulus.

The proof is very similar to the proof of Theorem 25.1 for the Taylor series representation of
an analytic function in a disk |z−z0| < R. We will not include the full proof, but instead give
an indication of where the formula for aj comes from. Suppose that f(z) can be represented
as

f(z) =
∞�

k=−∞

ak(z − z0)
k

with convergence in the annulus r < |z − z0| < R. Observe that

1

2πi
f(z)(z − z0)

−j =
∞�

k=−∞

ak

2πi
(z − z0)

k−j
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and so
1

2πi

�

C

f(z)

(z − z0)j
dz =

∞�

k=−∞

ak

2πi

�

C

1

(z − z0)j−k
dz

where C is any closed contour oriented counterclockwise that surrounds z0 and lies entirely
in the annulus. We now observe from Theorem 21.1 that

�

C

1

(z − z0)j−k
dz = 2πi if k = j − 1

and �

C

1

(z − z0)j−k
dz = 0 if k �= j − 1

so that
1

2πi

�

C

f(z)

(z − z0)j
dz =

∞�

k=−∞

ak

2πi

�

C

1

(z − z0)j−k
dz = aj−1.

In other words,

aj−1 =
1

2πi

�

C

f(z)

(z − z0)j
dz or, equivalently, aj =

1

2πi

�

C

f(z)

(z − z0)j+1
dz.

Remark. Observe that

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ

so, at least for j = 0, 1, 2, . . ., it might be tempting to use the Cauchy Integral Formula
(Theorem 23.4) to try and conclude that aj is equal to

f
(j)(z0)

j!

as was the case in the Taylor series derivation. This is not true, however, since the assumption
on f(z) is that it is analytic in the annulus r < |z − z0| < R. This means that if C is a
closed contour oriented counterclockwise lying in the annulus and surrounding z0, there is no
guarantee that f(z) is analytic everywhere inside C which is the assumption required in order
to apply the Cauchy Integral Formula. Thus, although there is a seemingly simple formula
for the coefficients aj in the Laurent series expansion, the computation of aj as a contour
integral is not necessarily a straightforward application of the Cauchy Integral Formula.

Example 27.2. Suppose that

f(z) =
1 + 2z

z2 + z3

which is analytic for 0 < |z| < 1. Show that the Laurent series expansion of f(z) for
0 < |z| < 1 is

1

z2
+

1

z
− 1 + z − z

2 + · · · .
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Solution. Suppose that C is any closed contour oriented counterclockwise lying entirely in
{0 < |z| < 1} and surrounding z0 = 0. Consider

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ =

1

2πi

�

C

1 + 2ζ

ζ2 + ζ3
· 1

ζj+1
dζ =

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ.

The reason for writing it in this form is that now we can apply the Cauchy Integral Formula
to compute

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ.

Observe that the function

g(z) =
1 + 2z

1 + z

is analytic inside and on C. Thus, the Cauchy Integral Theorem implies that if j ≤ −3, then

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ = 0

so that a−3 = a−4 = · · · = 0. The Cauchy Integral Formula implies that if j ≥ −2, then

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ =

1

2πi

�

C

g(ζ)

ζj+3
dζ =

g
(j+2)(0)

(j + 2)!
.

Note that if j = −2, then a−2 = g(0) = 1. In order to compute successive derivatives of
g(z), observe that

g(z) =
1 + 2z

1 + z
=

1

1 + z
+

2z

1 + z

Now, if k = 1, 2, 3, . . ., then

dk

dzk

�
1

1 + z

�
= (−1)k

k!

(1 + z)k+1

and
dk

dzk

�
z

1 + z

�
= (−1)k+1 k!

(1 + z)k
+ (−1)k

k!z

(1 + z)k+1

so that
g
(k)(0) = (−1)kk! + 2(−1)k+1

k! = (−1)k+1
k! for k = 1, 2, 3, . . ..

This implies

aj =
g
(j+2)(0)

(j + 2)!
=

(−1)j+3(j + 2)!

(j + 2)!
= (−1)j+3 = (−1)j+1 for j = −1, 0, 1, 2 . . .

so that the Laurent series expansion of f(z) for 0 < |z| < 1 is

1

z2
+

1

z
− 1 + z − z

2 + · · · = 1

z2
+

∞�

j=−1

(−1)j+1
z
j
.

Remark. We will soon learn other methods for determining Laurent series expansions that
do not require the computation of contour integrals.
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A first look at residue theory as an application of Laurent series

One important application of the theory of Laurent series is in the computation of contour
integrals. Suppose that f(z) is analytic in the annulus 0 < |z − z0| < R so that f(z) has a
Laurent series expansion

f(z) =
∞�

j=0

aj(z − z0)
j +

∞�

j=1

a−j(z − z0)
−j
.

Let C be any closed contour oriented counterclockwise lying entirely in the annulus and
surrounding z0 so that

�

C

f(z) dz =
∞�

j=0

aj

�

C

(z − z0)
j dz +

∞�

j=1

a−j

�

C

(z − z0)
−j dz.

We know from Theorem 21.1 that

�

C

(z − z0)
j dz =

�
2πi, if j = −1,

0, if j �= −1,

so that �

C

f(z) dz = 2πia−1.

Thus, we see that the coefficient a−1 in the Laurent series expansion of f(z) in an annulus
of the form 0 < |z− z0| < R is of particular importance. In fact, it has a name and is called
the residue of f(z) at z0, denoted by a−1 = Res(f ; z0).

Example 27.3. Since the Laurent series of

f(z) =
1 + 2z

z2 + z3

for 0 < |z| < 1 is
1

z2
+

1

z
− 1 + z − z

2 + · · · ,

we conclude that �

C

1 + 2z

z2 + z3
dz = 2πia−1 = 2πi

for any contour C lying entirely in {0 < |z| < 1} and surrounding 0.
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Lecture #28: Calculating Laurent Series

Example 28.1. Determine the Laurent series for

f(z) =
1

(z − 1)(2− z)

for (i) 1 < |z| < 2, and (ii) |z| > 2.

Solution. Note that the only singular points of f(z) occur at 1 and 2. This means that (i)
f(z) is analytic in the annulus 1 < |z| < 2, and (ii) f(z) is analytic for |z| > 2. Hence, in
either case, the Laurent series for f(z) will necessarily be of the form

f(z) =
∞�

j=1

ajz
j +

∞�

j=1

a−jz
−j
,

and so the idea is that we will find the coefficients aj directly rather than by contour inte-
gration. (It is worth stressing that the coefficients in the Laurent series expansions for (i)
and (ii) will not necessarily be the same.)

(i) Using partial fractions, we find

f(z) =
1

(z − 1)(2− z)
=

1

z − 1
− 1

z − 2
.

Now consider
1

z − 1
= − 1

1− z
= −

∞�

j=0

z
j
.

We know this series converges for |z| < 1. However, we are interested in determining a series
which converges for |z| > 1. Thus, we write

1

z − 1
=

1/z

1− 1/z

and observe that the series
1

1− 1/z
=

∞�

j=0

(1/z)j

converges for |1/z| < 1, or equivalently, |z| > 1. This implies

1

z − 1
=

1/z

1− 1/z
=

1

z

∞�

j=0

z
−j =

∞�

j=0

z
−j−1 =

∞�

j=1

z
−j for |z| > 1.

Now consider

− 1

z − 2
=

1/2

1− z/2
=

1

2

∞�

j=0

(z/2)j =
∞�

j=0

z
j

2j+1
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which converges for |z/2| < 1, or equivalently, |z| < 2. Thus, when we add these two series,
we obtain

1

z − 1
− 1

z − 2
=

∞�

j=1

z
−j +

∞�

j=0

z
j

2j+1
.

Note that the first series converges for |z| > 1 while the second series converges for |z| < 2.
This means that they BOTH converge when 1 < |z| < 2, and so we have found the Laurent
series for f(z) for 1 < |z| < 2, namely

f(z) =
1

(z − 1)(2− z)
=

∞�

j=0

z
j

2j+1
+

∞�

j=1

z
−j
.

(ii) We now want the Laurent series for f(z) to converge for |z| > 2. We already know that

1

z − 1
=

∞�

j=1

z
−j

converges for |z| > 1. However, the series that we found for

1

z − 2

converges for |z| < 2. This means that we need to manipulate it differently, say

1

z − 2
=

1/z

1− 2/z
=

1

z

∞�

j=0

(2/z)j =
∞�

j=0

2jz−j−1 =
∞�

j=1

2j−1
z
−j

which converges for |2/z| < 1, or equivalently, |z| > 2. Thus,

f(z) =
1

(z − 1)(2− z)
=

1

z − 1
− 1

z − 2
=

∞�

j=1

z
−j −

∞�

j=1

2j−1
z
−j =

∞�

j=1

(1− 2j−1)z−j

for |z| > 2.

Example 28.2. Determine the Laurent series for

f(z) =
e
2z

(z − 1)3

for all |z − 1| > 0.

Solution. Observe that f(z) is analytic for |z − 1| > 0. Now

f(z) =
e
2z

(z − 1)3
=

e
2(z−1+1)

(z − 1)3
= e

2 e
2(z−1)

(z − 1)3
.

Recall that the Taylor series for ew is

e
w = 1 + w +

w
2

2!
+

w
3

3!
+ · · · =

∞�

j=0

w
j

j!
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which converges for all w ∈ C. This implies

e
2(z−1) = 1 + 2(z − 1) +

22(z − 1)2

2!
+

23(z − 1)3

3!
+ · · · =

∞�

j=0

2j(z − 1)j

j!
.

Hence,
e
2(z−1)

(z − 1)3
= (z − 1)−3

∞�

j=0

2j(z − 1)j

j!
=

∞�

j=0

2j(z − 1)j−3

j!

so that the Laurent series of f(z) for |z − 1| > 0 is

f(z) =
e
2z

(z − 1)3
= e

2
∞�

j=0

2j(z − 1)j−3

j!
= e

2

�
1

(z − 1)3
+

2

(z − 1)2
+

4

2(z − 1)
+

8

6
+ · · ·

�
.

Example 28.3. Let

sinh z =
e
z − e

−z

2
= −i sin(iz)

and let

f(z) =
1

z2 sinh z
.

Determine the first few terms of the Laurent series for f(z) in 0 < |z| < π, and then calculate
�

C

1

z2 sinh z
dz

where C = {|z| = 1} is the unit circle centred at 0 oriented counterclockwise.

Solution. On Assignment #9 you will show that the Taylor series for the entire function
sinh z is

sinh z = z +
z
3

3!
+

z
5

5!
+ · · · =

∞�

j=0

z
2j+1

(2j + 1)!

which converges for all z ∈ C. Moreover, it is not too difficult to show that sinh z = 0 if and
only if z ∈ {0,±iπ,±2iπ, . . .}. This implies that f(z) is analytic for 0 < |z| < π. Now

f(z) =
1

z2 sinh z
=

1

z2
�
z + z3

3! +
z5

5! + · · ·
� =

1

z3

1

1 + z2

3! +
z4

5! + · · ·
.

Using the identity
1

1 + w
= 1− w + w

2 − w
3 + · · · ,

we obtain

1

1 + z2

3! +
z4

5! + · · ·
= 1−

�
z
2

3!
+

z
4

5!
+ · · ·

�
+

�
z
2

3!
+

z
4

5!
+ · · ·

�2

+ · · · = 1− z
2

6
+

7z4

360
+ · · ·

so that
1

z2 sinh z
=

1

z3

�
1− z

2

6
+

7z4

360
+ · · ·

�
=

1

z3
− 1

6z
+

7z

360
+ · · ·

for 0 < |z| < π. Hence,
�

C

1

z2 sinh z
dz =

�

C

1

z3
− 1

6z
+

7z

360
+ · · · dz = −2πi

6
= −πi

3
.
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Lecture #29: Laurent Series and Residue Theory

Example 29.1. Determine the Laurent series of

f(z) =
z
2 − 2z + 3

z − 2

for |z − 1| > 1.

Solution. Note that f(z) is analytic for |z−1| > 1 since the only singularity for f(z) occurs
at z = 2. Since we are expanding about the point z0 = 1, the Laurent series will necessarily
have the form

f(z) =
∞�

j=−∞

aj(z − z0)
j
.

Therefore, if we want to expand in powers of z− 1, we need to turn both our numerator and
denominator into functions of z − 1. Observe that

1

z − 2
=

1

(z − 1)− 1
=

1

z − 1

1

1− 1
z−1

=
1

z − 1

∞�

j=0

�
1

z − 1

�j

=
∞�

j=0

(z−1)−j−1 =
∞�

j=1

(z−1)−j

for |1/(z − 1)| < 1, or equivalently, |z − 1| > 1, and

z
2 − 2z + 3 = (z − 1)2 + 2.

This yields

f(z) =
�
(z − 1)2 + 2

� ∞�

j=1

(z − 1)−j =
∞�

j=1

�
1

z − 1

�j−2

+ 2
∞�

j=1

�
1

z − 1

�j

= (z − 1) + 1 +
∞�

j=3

�
1

z − 1

�j−2

+ 2
∞�

j=1

�
1

z − 1

�j

= (z − 1) + 1 + 3
∞�

j=1

�
1

z − 1

�j

for |z − 1| > 1 as the required Laurent series.

Classifying isolated singularities

We will now focus on functions that have an isolated singularity at z0. Therefore, suppose
that f(z) is analytic in the annulus 0 < |z − z0| < R and has an isolated singularity at z0.
Consider its Laurent series expansion

f(z) =
∞�

j=0

aj(z − z0)
j +

∞�

j=1

a−j(z − z0)
−j
.
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We call the part with the negative powers of (z − z0), namely

∞�

j=1

a−j(z − z0)
−j
,

the principal part of the Laurent series. There are three mutually exclusive possibilities for
the principal part.

(i) If aj = 0 for all j < 0, then we say that z0 is a removable singularity of f(z).

(ii) If a−m �= 0 for some m ∈ N, but aj = 0 for all j < −m, then we say that z0 is a pole
of order m for f(z).

(iii) If aj �= 0 for infinitely many j < 0, then we say that z0 is an essential singularity of
f(z).

Example 29.2. Suppose that

f(z) =
sin z

z

for |z| > 0. Since the Laurent series expansion of f(z) is

f(z) =
1

z
sin z =

1

z

�
z − z

3

3!
+

z
5

5!
− z

7

7!
+ · · ·

�
= 1− z

2

3!
+

z
4

5!
− z

6

7!
+ · · · ,

we conclude that z0 = 0 is a removable singularity.

Example 29.3. Suppose that

f(z) =
e
z

zm

for |z| > 0 where m is a positive integer. Since

f(z) =
1

zm

�
1 + z +

z
2

2!
+

z
3

3!
+ · · ·

�

=
1

zm
+

1

zm−1
+

1

2!zm−2
+ · · ·+ 1

(m− 1)!z
+

1

m!
+

z

(m+ 1)!
+ · · · ,

we conclude that z0 = 0 is a pole of order m.

Example 29.4. Suppose that
f(z) = e

1/z

for |z| > 0. Since

f(z) = e
1/z = 1 + (1/z) +

(1/z)2

2!
+

(1/z)3

3!
+ · · · = 1 +

1

z
+

1

2!z2
+

1

3!z3
+ · · · ,

we conclude that z0 = 0 is an essential singularity.
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Recall from Lecture #27 that we took a first look at residue theory as an application of
Laurent series. The basic idea is that if we have the Laurent series expansion of a function
f(z) for 0 < |z − z0| < R and C is an closed contour oriented counterclockwise surrounding
z0, then �

C

f(z) dz = 2πia−1

where a−1 is the coefficient of the (z − z0)−1 term in the Laurent series expansion of f(z).

Definition. Suppose that the function f(z) has an isolated singularity at z0. The coefficient
a−1 of (z − z0)−1 in the Laurent series expansion of f(z) around z0 is called the residue of
f(z) at z0 and is denoted by

a−1 = Res(f ; z0).

Example 29.5. Suppose that C = {|z| = 1} denotes the unit circle oriented counterclock-
wise. Compute the following three integrals:

(a)

�

C

sin z

z
dz,

(b)

�

C

e
z

zm
dz, where m is a positive integer, and

(c)

�

C

e
1/z dz.

Solution. In order to compute all three integrals, we use the fact that z0 = 0 is an isolated
singularity so that �

C

f(z) dz = 2πiRes(f ; 0).

(a) From Example 29.2, we know that a−1 = 0 so that

�

C

sin z

z
dz = 0.

(b) From Example 29.3, we know that a−1 = 1/(m− 1)! so that

�

C

e
z

zm
dz =

2πi

(m− 1)!
.

(c) From Example 29.4, we know that a−1 = 1 so that

�

C

e
1/z dz = 2πi.

Note that although we could have used the Cauchy Integral Formula to solve (a) and (b),
we could not have used it to solve (c).
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Question. Given the obvious importance of the coefficient a−1 in a Laurent series, it is
natural to ask if there is any way to determine a−1 without computing the entire Laurent
series.

Theorem 29.6. A function f(z) has a pole of order m at z0 if and only if

f(z) =
g(z)

(z − z0)m

for some function g(z) that is analytic in a neighbourhood of z0 and has g(z0) �= 0.

Proof. Suppose that f(z) has a pole of order m at z0. By definition, the Laurent series for
f(z) has the form

f(z) =
a−m

(z − z0)m
+

∞�

j=−(m−1)

aj(z − z0)
j

and so

(z − z0)
m
f(z) = a−m +

∞�

j=−(m−1)

aj(z − z0)
j+m = a−m +

∞�

j=1

aj−m(z − z0)
j
.

Therefore, if we let

g(z) = a−m +
∞�

j=1

aj−m(z − z0)
j
,

then g(z) is analytic in a neighbourhood of z0. By assumption, a−m �= 0 since f(z) has a
pole of order m at z0, and so g(z0) = a−m �= 0.

Conversely, suppose that

f(z) =
g(z)

(z − z0)m

for some function g(z) that is analytic in a neighbourhood of z0 and has g(z0) �= 0. Since
g(z) is analytic, it can be expanded in a Taylor series about z0, say

g(z) = b0 + b1(z − z0) + b2(z − z0)
2 + · · · =

∞�

j=0

bj(z − z0)
j
.

Since g(z0) = b0 �= 0 by assumption, we obtain

f(z) =
1

(z − z0)m

∞�

j=0

bj(z − z0)
j =

b0

(z − z0)m
+

b1

(z − z0)m−1
+ · · · .

Therefore, by definition, f(z) has a pole of order m at z0.
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Lecture #30: The Cauchy Residue Theorem

Recall that last class we showed that a function f(z) has a pole of order m at z0 if and only
if

f(z) =
g(z)

(z − z0)m

for some function g(z) that is analytic in a neighbourhood of z0 and has g(z0) �= 0.

Example 30.1. Suppose that

f(z) =
sin z

(z2 − 1)2
.

Determine the order of the pole at z0 = 1.

Solution. Observe that z2 − 1 = (z − 1)(z + 1) and so

f(z) =
sin z

(z2 − 1)2
=

sin z

(z − 1)2(z + 1)2
=

sin z/(z + 1)2

(z − 1)2
.

Since

g(z) =
sin z

(z + 1)2

is analytic at 1 and g(1) = 2−2 sin(1) �= 0, we conclude that z0 = 1 is a pole of order 2.

Suppose that f(z) has a pole of order m at z0 so that we can write

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

z − z0
+

∞�

j=0

aj(z − z0)
j
.

Therefore,

(z − z0)
m
f(z) = a−m + a−(m−1)(z − z0) + · · ·+ a−1(z − z0)

m−1 +
∞�

j=0

aj(z − z0)
j+m

which is analytic at z0 by Theorem 29.6. This means we can pick out a−1 by taking successive
derivatives. That is, differentiating m− 1 times gives

dm−1

dzm−1
(z − z0)

m
f(z) = (m− 1)!a−1 +

∞�

j=0

bj(z − z0)
j+1

for some coefficients bj. The exact value of these coefficients is unimportant since we are
going to make the non-constant terms disappear now. If we evaluate the previous expression
at z = z0 (which is justified since (z − z0)mf(z) = g(z) is analytic at z0), then we find

dm−1

dzm−1
(z − z0)

m
f(z)

����
z=z0

= (m− 1)!a−1,
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and so we’ve found our formula for a−1 in the case that f(z) has a pole of order m at z0.
Note that if m = 1, in which case f(z) has a simple pole at z0, then taking derivatives is
unnecessary. We just need to evaluate (z − z0)f(z) at z0.

Theorem 30.2. If f(z) is analytic for 0 < |z − z0| < R and has a pole of order m at z0,
then

Res(f ; z0) =
1

(m− 1)!

dm−1

dzm−1
(z − z0)

m
f(z)

����
z=z0

=
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)

m
f(z).

In particular, if z0 is a simple pole, then

Res(f ; z0) = (z − z0)f(z)

����
z=z0

= lim
z→z0

(z − z0)f(z).

Example 30.3. Determine the residue at z0 = 1 of

f(z) =
sin z

(z2 − 1)2

and compute �

C

f(z) dz

where C = {|z− 1| = 1/2} is the circle of radius 1/2 centred at 1 oriented counterclockwise.

Solution. Since we can write (z − 1)2f(z) = g(z) where

g(z) =
sin z

(z + 1)2

is analytic at z0 = 1 with g(1) �= 0, the residue of f(z) at z0 = 1 is

Res(f ; 1) =
1

(2− 1)!

d2−1

dz2−1
(z − 1)2f(z)

����
z=1

=
d

dz
(z − 1)2f(z)

����
z=1

=
d

dz

sin z

(z + 1)2

����
z=1

=
(z + 1)2 cos z − 2(z + 1) sin z

(z + 1)4

����
z=1

=
4 cos 1− 4 sin 1

16

=
cos 1− sin 1

4
.

Observe that if C = {|z − 1| = 1/2} oriented counterclockwise, then the only singularity of
f(z) inside C is at z0 = 1. Therefore,

�

C

sin z

(z2 − 1)2
dz = 2πiRes(f ; 1) =

(cos 1− sin 1)πi

2
.
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It is worth pointing out that we could have also obtained this solution using the Cauchy
Integral Formula; that is,

�

C

sin z

(z2 − 1)2
dz =

�

C

g(z)

(z − 1)2
dz = 2πig�(1) = 2πi · cos 1− sin 1

4
=

(cos 1− sin 1)πi

2

as above.

Remark. Suppose that C is a closed contour oriented counterclockwise. If f(z) is analytic
inside and on C except for a single point z0 where f(z) has a pole of order m, then both
the Cauchy Integral Formula and the residue formula will require exactly the same work,
namely the calculation of the m− 1 derivative of (z − z0)mf(z).

Recall that there are two other types of isolated singular points to consider, namely removable
singularities and essential singularities. If the singularity is removable, then the residue is
obviously 0. Unfortunately, there is no direct way to determine the residue associated with an
essential singularity. The coefficient a−1 of the Laurent series must be determined explicitly.

In summary, suppose that f(z) is analytic for 0 < |z−z0| < R and has an isolated singularity
at z0. By direct inspection of the function, one may make an educated guess as to whether
the isolated singularity is removable, a pole, or essential. If it believed to be either removable
or essential, then compute the Laurent series to determine Res(f ; z0). If it is believed to be
a pole, then attempt to compute Res(f ; z0) using Theorem 30.2.

Theorem 30.4 (Cauchy Residue Theorem). Suppose that C is a closed contour oriented
counterclockwise. If f(z) is analytic inside and on C except at a finite number of isolated
singularities z1, z2, . . . , zn, then

�

C

f(z) dz = 2πi
n�

j=1

Res(f ; zj).

Proof. Observe that if C is a closed contour oriented counterclockwise, then integration over
C can be continuously deformed to a union of integrations over C1, C2, . . . , Cn where Cj is
a circle oriented counterclockwise encircling exactly one isolated singularity, namely zj, and
not passing through any of the other isolated singular points. This yields

�

C

f(z) dz =

�

C1

f(z) dz + · · ·+
�

Cn

f(z) dz.

Since �

Cj

f(z) dz = 2πiRes(f ; zj),

the proof is complete.

Remark. Note that if the isolated singularities of f(z) inside C are all either removable or
poles, then the Cauchy Integral Formula can also be used to compute

�

C

f(z) dz.
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If any of the isolated singularities are essential, then the Cauchy Integral Formula does not
apply. Moreover, even when f(z) has only removable singularities or poles, the Residue
Theorem is often much easier to use than the Cauchy Integral Formula.

Example 30.5. Compute �

C

3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
dz

where C = {|z| = 3} is the circle of radius 3 centred at 0 oriented counterclockwise.

Solution. Observe that

f(z) =
3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
=

3z3 + 4z2 − 5z + 1

z(z − 1)(z + 1)(z − 2i)

has isolated singular points at z1 = 0, z2 = 1, z3 = −1, and z4 = 2i. Moreover, each isolated
singularity is a simple pole, and so

Res(f ; 0) =
3z3 + 4z2 − 5z + 1

(z − 1)(z + 1)(z − 2i)

����
z=0

=
1

−1 · −2i
= − i

2
,

Res(f ; 1) =
3z3 + 4z2 − 5z + 1

z(z + 1)(z − 2i)

����
z=1

=
3 + 4− 5 + 1

1 · 2 · (1− 2i)
=

3

2(1− 2i)
=

3(1 + 2i)

10
,

Res(f ;−1) =
3z3 + 4z2 − 5z + 1

z(z − 1)(z − 2i)

����
z=−1

=
−3 + 4 + 5 + 1

−1 · −2 · (−1− 2i)
= − 7

2(1 + 2i)
=

7(2i− 1)

10
,

Res(f ; 2i) =
3z3 + 4z2 − 5z + 1

z(z − 1)(z + 1)

����
z=2i

=
3(2i)3 + 4(2i)2 − 5(2i) + 1

2i(2i− 1)(2i+ 1)
=

34− 15i

10
.

By the Cauchy Residue Theorem,

�

C

3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
dz = 2πi

�
− i

2
+

3(1 + 2i)

10
+

7(2i− 1)

10
+

34− 15i

10

�
= 6πi.
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Lecture #31: Computing Real Trigonometric Integrals

Suppose that C is a closed contour oriented counterclockwise. Last class we proved the
Residue Theorem which states that if f(z) is analytic inside and on C, except for a finite
number of isolated singular points z1, . . . , zn, then

�

C

f(z) dz = 2πi
n�

j=1

Res(f ; zj).

In order to compute Res(f ; zj), we need to determine whether or not the isolated singular
point zj is removable, essential, or a pole of order m. If zj is a pole of order m, then we
know

Res(f ; zj) =
1

(m− 1)!

dm−1

dzm−1
(z − zj)

m
f(z)

����
z=zj

=
1

(m− 1)!
lim
z→zj

dm−1

dzm−1
(z − zj)

m
f(z).

In particular, if zj is a simple pole, then

Res(f ; zj) = (z − zj)f(z)

����
z=zj

= lim
z→zj

(z − zj)f(z).

Example 31.1. Compute �

C

2

z2 + 4z + 1
dz

where C = {|z| = 1} is the circle of radius 1 centred at 0 oriented counterclockwise.

Solution. Clearly

f(z) =
2

z2 + 4z + 1

has two simple poles. Notice that z2 + 4z + 1 = (z2 + 4z + 4)− 3 = (z + 2)2 − 3 = 0 implies

z1 =
√
3− 2 and z2 = −

√
3− 2

are simple poles. However, |z1| < 1 and |z2| > 1 which means that f(z) only has one isolated
singularity inside C. Since

z
2 + 4z + 1 = (z − z1)(z − z2) = (z −

√
3 + 2)(z +

√
3 + 2),

we find

Res(f ; z1) = Res(f ;
√
3− 2) =

2

z +
√
3 + 2

����
z=

√
3−2

=
2

2
√
3
=

1√
3
,

so by the Cauchy Residue Theorem,
�

C

2z

z2 + 4z + 1
dz = 2πi · 1√

3
=

2√
3
πi.
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Suppose that we now parametrize C by z(t) = e
it, 0 ≤ t ≤ 2π, and attempt to compute this

same contour integral using
�

C

f(z) dz =

� 2π

0

f(eit) · ieit dt.

That is,
�

C

2

z2 + 4z + 1
dz =

� 2π

0

2

e2it + 4eit + 1
· ieit dt = 2i

� 2π

0

e
it

e2it + 4eit + 1
dt

= 2i

� 2π

0

1

eit + 4 + e−it
dt

= 2i

� 2π

0

1

4 + 2 cos t
dt

= i

� 2π

0

1

2 + cos t
dt

and so

2√
3
πi = i

� 2π

0

1

2 + cos t
dt or, equivalently,

� 2π

0

1

2 + cos t
dt =

2√
3
π.

Notice that we were able to compute a definite integral by relating it to a contour integral
that could be evaluated using the Residue Theorem. If we have a definite integral, the limits
of integration are 0 to 2π, and the integrand is a function of cos θ and sin θ, then we can
systematically convert it to a contour integral as follows. Let C = {|z| = 1} denote the
circle of radius 1 centred at 0 oriented counterclockwise and parametrize C by z(θ) = e

iθ,
0 ≤ θ ≤ 2π, so that z�(θ) = ie

iθ = iz(θ). Since

z(θ) = e
iθ = cos θ + i sin θ and

1

z(θ)
= e

−iθ = cos θ − i sin θ,

we find

cos θ =
e
iθ + e

−iθ

2
=

1

2

�
z(θ) +

1

z(θ)

�
and sin θ =

e
iθ − e

−iθ

2i
=

1

2i

�
z(θ)− 1

z(θ)

�
.

Therefore,
� 2π

0

F (cos θ, sin θ) dθ =

� 2π

0

F

�
1

2

�
z(θ) +

1

z(θ)

�
,
1

2i

�
z(θ)− 1

z(θ)

��
dθ

=

� 2π

0

F

�
1

2

�
z(θ) +

1

z(θ)

�
,
1

2i

�
z(θ)− 1

z(θ)

��
z
�(θ)

z�(θ)
dθ

=

� 2π

0

F

�
1

2

�
z(θ) +

1

z(θ)

�
,
1

2i

�
z(θ)− 1

z(θ)

��
1

iz(θ)
z
�(θ) dθ

=

�

C

F

�
1

2

�
z +

1

z

�
,
1

2i

�
z − 1

z

��
1

iz
dz.
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Example 31.2. Compute � 2π

0

cos(2θ)

5− 4 cos θ
dθ.

Solution. Let C = {|z| = 1} oriented counterclockwise be parametrized by z(θ) = e
iθ,

0 ≤ θ ≤ 2π. Note that

cos(2θ) =
e
2iθ + e

−2iθ

2
=

1

2

�
z(θ)2 +

1

z(θ)2

�
=

z(θ)4 + 1

2z(θ)2

and

5− 4 cos θ = 5− 4 · 1
2

�
z(θ) +

1

z(θ)

�
= 5− 2z(θ)− 2

z(θ)
= −2z(θ)2 − 5z(θ) + 2

z(θ)
,

so that

cos(2θ)

5− 4 cos θ
=

z(θ)4+1
2z(θ)2

−2z(θ)2−5z(θ)+2
z(θ)

= − z(θ)4 + 1

2z(θ) (2z(θ)2 − 5z(θ) + 2)
= − z(θ)4 + 1

2z(θ)(2z(θ)− 1)(z(θ)− 2)
.

This implies
� 2π

0

cos(2θ)

5− 4 cos θ
dθ = −

� 2π

0

z(θ)4 + 1

2z(θ)(2z(θ)− 1)(z(θ)− 2)
dθ = −

�

C

z
4 + 1

2z(2z − 1)(z − 2)
· 1

iz
dz

=
i

2

�

C

z
4 + 1

z2(2z − 1)(z − 2)
dz.

Let

f(z) =
z
4 + 1

z2(2z − 1)(z − 2)

so that f(z) clearly has a double pole at z1 = 0, a simple pole at z2 = 1/2, and a simple pole
at z3 = 2. Of these three singularities of f(z), only two of them are inside C. Therefore,

Res(f ; 0) =
d

dz

z
4 + 1

(2z − 1)(z − 2)

����
z=0

=
4z3(2z − 1)(z − 2)− (z4 + 1)(4z − 5)

(2z − 1)2(z − 2)2

����
z=0

=
5

4

and

Res(f ; 1/2) =

�
z − 1

2

�
z
4 + 1

z2(2z − 1)(z − 2)

����
z=1/2

=
z
4 + 1

2z2(z − 2)

����
z=1/2

= −17

12
.

By the Residue Theorem,
� 2π

0

cos(2θ)

5− 4 cos θ
dθ =

i

2

�

C

z
4 + 1

z2(2z − 1)(z − 2)
dz =

i

2
· 2πi

�
5

4
− 17

12

�
=

π

6
.

Remark. It is possible to compute both
� 2π

0

1

2 + cos θ
dθ and

� 2π

0

cos(2θ)

5− 4 cos θ
dθ

by calculating indefinite Riemann integrals. However, such calculations are very challenging.
The contour integral approach is significantly easier.
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Lecture #32: Computing Real Improper Integrals

Example 32.1. Compute � ∞

0

x
2

(x2 + 1)(x2 + 4)
dx.

Solution. Although it is possible to compute this particular integral using partial fractions
easily enough, we will solve it with complex variables in order to illustrate a general method
which works in more complicated cases. Observe that by symmetry,

2

� ∞

0

x
2

(x2 + 1)(x2 + 4)
dx =

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx.

Suppose that C = CR ⊕ [−R,R] denotes the closed contour oriented counterclockwise ob-
tained by concatenating CR, that part of the circle of radius R in the upper half plane
parametrized by z(t) = Re

it, 0 ≤ t ≤ π, with [−R,R], the line segment along the real axis
connecting the point −R to the point R. Therefore, if

f(z) =
z
2

(z2 + 1)(z2 + 4)
,

then �

C

f(z) dz =

�

[−R,R]

f(z) dz +

�

CR

f(z) dz. (∗)

We now observe that we can compute
�

C

f(z) dz =

�

C

z
2

(z2 + 1)(z2 + 4)
dz

using the Residue Theorem. That is, since

f(z) =
z
2

(z2 + 1)(z2 + 4)
=

z
2

(z + i)(z − i)(z + 2i)(z − 2i)
,

we find that f(z) has simple poles at z1 = i, z2 = −i, z3 = 2i, z4 = −2i. However, only z1

and z3 are inside C (assuming, of course, that R is sufficiently large). Thus,

Res(f ; z1) =
z
2

(z + i)(z + 2i)(z − 2i)

����
z=z1=i

=
i
2

(2i)(3i)(−i)
=

i

6

and

Res(f ; z3) =
z
2

(z + i)(z − i)(z + 2i)

����
z=z3=2i

=
(2i)2

(3i)(i)(4i)
= − i

3
,

so by the Residue Theorem,
�

C

f(z) dz =

�

C

z
2

(z2 + 1)(z2 + 4)
dz = 2πi

�
i

6
− i

3

�
=

π

3
.
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In other words, we have shown that for R sufficiently large (∗) becomes

π

3
=

�

[−R,R]

z
2

(z2 + 1)(z2 + 4)
dz +

�

CR

z
2

(z2 + 1)(z2 + 4)
dz.

The next step is to observe that since [−R,R] denotes the line segment along the real axis
connecting the point −R to the point R, if we parametrize the line segment by z(t) = t,
−R ≤ t ≤ R, then since z

�(t) = 1, we obtain
�

[−R,R]

z
2

(z2 + 1)(z2 + 4)
dz =

� R

−R

t
2

(t2 + 1)(t2 + 4)
dt =

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx

where the last equality follows by a simple change of dummy variable from t to x. Thus,

π

3
=

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx+

�

CR

z
2

(z2 + 1)(z2 + 4)
dz

and so by taking the limit as R → ∞ of both sides we obtain

π

3
= lim

R→∞

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx+ lim

R→∞

�

CR

z
2

(z2 + 1)(z2 + 4)
dz.

We now make two claims.

Claim 1.

lim
R→∞

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx =

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx

Claim 2.

lim
R→∞

�

CR

z
2

(z2 + 1)(z2 + 4)
dz = 0

Assuming that both claims are true, we obtain

π

3
=

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx and so

� ∞

0

x
2

(x2 + 1)(x2 + 4)
dx =

π

6

which is in agreement with what one obtains by using partial fractions.

Hence, the next task is to address these two claims. We will begin with the second claim
which follows immediately from this result.

Theorem 32.2. Suppose that CR denotes the upper half of the circle connecting R to −R

and parametrized by z(t) = Re
it, 0 ≤ t ≤ π. If

f(z) =
P (z)

Q(z)

is the ratio of two polynomials satisfying degQ ≥ degP + 2, then

lim
R→∞

�

CR

f(z) = 0.
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Proof. The fact that degQ ≥ degP + 2 implies that if |z| is sufficiently large, then

|f(z)| =
����
P (z)

Q(z)

���� ≤
K

|z|2 (†)

for some constant K < ∞. (See the supplement for derivation of (†).) Hence,
����
�

CR

f(z) dz

���� ≤
�

CR

|f(z)| dz =

�

CR

K

|z|2 dz =
K

R2
�(CR) =

Kπ

R

since �(CR) = πR is the arclength of CR. Taking R → ∞ then yields the result.

Thus, we conclude from this theorem that

lim
R→∞

�

CR

z
2

(z2 + 1)(z2 + 4)
dz = 0

since P (z) = z
2 has degree 2 and Q(z) = (z2 + 1)(z2 + 4) has degree 4.

Review of Improper Integrals

In order to discuss Claim 1, it is necessary to review improper integrals from first year
calculus. Suppose that f : R → R is continuous. By definition,

� ∞

0

f(x) dx = lim
b→∞

� b

0

f(x) dx.

Thus, assuming the limit exists as a real number, we define
� ∞

0

f(x) dx

to be this limiting value. By definition,
� 0

−∞
f(x) dx = lim

a→−∞

� 0

a

f(x) dx.

Thus, assuming the limit exists as a real number, we define
� 0

−∞
f(x) dx

to be this limiting value. By definition,

� ∞

−∞
f(x) dx =

� ∞

0

f(x) dx+

� 0

−∞
f(x) dx = lim

b→∞

� b

0

f(x) dx+ lim
a→−∞

� 0

a

f(x) dx.

Thus, in order for � ∞

−∞
f(x) dx (∗)
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to exist it must be the case that both

lim
b→∞

� b

0

f(x) dx and lim
a→−∞

� 0

a

f(x) dx

exist as real numbers. However, if one of these limits fails to exist as a real number, then
the improper integral (∗) does not exist. Sometimes, we might write

� ∞

−∞
f(x) dx = lim

a→−∞,b→∞

� b

a

f(x) dx (†)

instead which just writes the two separate limits in a single piece of notation. It is important
to stress that this notation still implies that two separate limits are being taken: a → −∞
and b → ∞. It might be tempting to try and combine the two separate limits into a single
limit as follows: � ∞

−∞
f(x) dx = lim

c→∞

� c

−c

f(x) dx. (‡)

However, (†) and (‡) are not the same! As we will now show, it is possible for

lim
c→∞

� c

−c

f(x) dx

to exist, but for

lim
a→−∞,b→∞

� b

a

f(x) dx

not to exist.

Example 32.3. Observe that
� c

−c

x dx =
x
2

2

����
c

−c

=
c
2

2
− (−c)2

2
= 0

and so

lim
c→∞

� c

−c

x dx = lim
c→0

0 = 0.

On the other hand,
� 0

a

x dx =
x
2

2

����
0

a

= −a
2

2
and

� b

0

x dx =
x
2

2

����
b

0

=
b
2

2

so that

lim
a→−∞

� 0

a

x dx = − lim
a→−∞

a
2

2
= −∞ and lim

b→∞

� b

0

x dx = lim
b→∞

b
2

2
= ∞.

Thus,

lim
a→−∞,b→∞

� b

a

x dx = −∞+∞ = ∞−∞

so that � ∞

−∞
x dx

does not exist.
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Supplement: Verification of (†) from proof of Theorem 32.2

Suppose that Q(z) = b0 + b1z + · · · + bmz
m is a polynomial of degree m. Without loss of

generality assume that bm = 1. Therefore,

z
−m

Q(z) = 1 +
bm−1

z
+ · · ·+ b0

zm

and so by the triangle inequality,

|z−m||Q(z)| =
����1 +

bm−1

z
+ · · ·+ b0

zm

���� ≥ 1−
����
bm−1

z
+ · · ·+ b0

zm

���� .

Let M = max{1, |b0|, . . . , |bm−1|} and note that 2mM > 1. This means that if |z| ≥ 2mM ,
then ����

bm−j

zj

���� ≤
M

|z|j ≤ M

|z| ≤
1

2m
.

Therefore, since there are m terms in the following sum,
����
bm−1

z
+ · · ·+ b0

zm

���� ≤
1

2m
+

1

2m
+ · · ·+ 1

2m
=

1

2

which implies that

|z−m||Q(z)| ≥ 1−
����
bm−1

z
+ · · ·+ b0

zm

���� ≥ 1− 1

2
=

1

2
.

Hence, we obtain,

|Q(z)| ≥ |z|m

2
for |z| sufficiently large. On the other hand, suppose that P (z) = a0 + a1z + · · ·+ anz

n is a
polynomial of degree n so that

z
−n

P (z) = an +
an−1

z
+ · · ·+ a0

zn
.

If |z| > 1, then by the triangle inequality,

|z−n
P (z)| ≤ |an|+

���
an−1

z

���+ · · ·+
���
a0

zn

��� ≤ |an|+ |an−1|+ · · ·+ |a0|

and so with C = |a0|+ · · ·+ |an| we obtain

|z−n
P (z)| ≤ C

for |z| > 1. Now suppose that

f(z) =
P (z)

Q(z)

is the ratio of polynomials with degQ(z) ≥ degP (z)+2. If degP (z) = n and degQ(z) = n+k

with k ≥ 2, then we find that for |z| sufficiently large,
����
P (z)

Q(z)

���� =
|z−n

P (z)|
|z−nQ(z)| ≤

C

|z|−n |z|n+k

2

=
2C

|z|k ≤ 2C

|z|2 =
K

|z|2

since k ≥ 2.

32–5



Mathematics 312 (Fall 2012) November 30, 2012
Prof. Michael Kozdron

Lecture #33: Cauchy Principal Value

Definition. Suppose that f : R → R is a continuous function on (−∞,∞). If

lim
R→∞

� R

−R

f(x) dx

exists, then we define the Cauchy principal value of the integral of f over (−∞,∞) to be
this value, and we write

p.v.

� ∞

−∞
f(x) dx = lim

R→∞

� R

−R

f(x) dx

for the value of this limit.

Remark. If � ∞

−∞
f(x) dx

exists, then � ∞

−∞
f(x) dx = p.v.

� ∞

−∞
f(x) dx.

However,

p.v.

� ∞

−∞
f(x) dx

may exist, even though � ∞

−∞
f(x) dx

does not exist. For instance,

p.v.

� ∞

−∞
x dx = 0 whereas

� ∞

−∞
x dx does not exist.

We can now finish verifying Claim 2 from Example 32.1 of the previous lecture.

Example 32.1 (continued). Recall that we had deduced

π

3
=

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx+

�

CR

z
2

(z2 + 1)(z2 + 4)
dz

where CR is that part of the circle of radius R in the upper half plane parametrized by
z(t) = Re

it, 0 ≤ t ≤ π. Taking the limit as R → ∞ and using Theorem 32.2, we obtained

π

3
= lim

R→∞

� R

−R

x
2

(x2 + 1)(x2 + 4)
dx.
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By the definition of the Cauchy principal value, we have actually shown

π

3
= p.v.

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx.

We now observe that
x
2

(x2 + 1)(x2 + 4)

is an even function so that
� R

−R

x
2

(x2 + 1)(x2 + 4)
dx = 2

� R

0

x
2

(x2 + 1)(x2 + 4)
dx

which implies that

p.v.

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx = 2 lim

R→∞

� R

0

x
2

(x2 + 1)(x2 + 4)
dx.

In order to verify that the improper integral actually exists, note that

����
� R

0

x
2

(x2 + 1)(x2 + 4)
dx

���� =
� R

0

x
2

(x2 + 1)(x2 + 4)
dx ≤

� R

0

1

x2 + 1
dx = arctanR

using the inequality x
2 ≤ (x2 + 4). Since arctanR → π/2 as R → ∞, we conclude

lim
R→∞

� R

0

x
2

(x2 + 1)(x2 + 4)
dx

exists by the integral comparison test. Thus,

π

3
= p.v.

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx =

� ∞

−∞

x
2

(x2 + 1)(x2 + 4)
dx = 2

� ∞

0

x
2

(x2 + 1)(x2 + 4)
dx

so that � ∞

0

x
2

(x2 + 1)(x2 + 4)
dx =

π

6
.

Example 33.1. Compute

p.v.

� ∞

−∞

1

x2 + 2x+ 1
dx.

Solution. Suppose that C = CR ⊕ [−R,R] denotes the closed contour oriented counter-
clockwise obtained by concatenating CR, that part of the circle of radius R in the upper half
plane parametrized by z(t) = Re

it, 0 ≤ t ≤ π, with [−R,R], the line segment along the real
axis connecting the point −R to the point R. Suppose further that

f(z) =
1

z2 + 2z + 2

33–2



so that f(z) has two simple poles. These occur where

z
2 + 2z + 2 = z

2 + 2z + 1 + 1 = (z + 1)2 + 1 = 0,

namely at z1 =
√
−1− 1 = i− 1 and z2 = −

√
−1− 1 = −i− 1 = −(i+ 1). Note that only

z1 is inside C, at least for R sufficiently large. Therefore, since

f(z) =
1

z2 + 2z + 2
=

1

(z − z1)(z − z2)
,

we conclude that

Res(f ; z1) =
1

z − z2

����
z=z1

=
1

z1 − z2
=

1

i− i+ (i+ 1)
=

1

2i
.

This implies �

C

1

z2 + 2z + 2
dz = 2πi

1

2i
= π

so that

π =

�

C

1

z2 + 2z + 2
dz =

�

[−R,R]

1

z2 + 2z + 2
dz +

�

CR

1

z2 + 2z + 2
dz

=

� R

−R

1

x2 + 2x+ 1
dx+

�

CR

1

z2 + 2z + 2
dz.

Taking R → ∞ yields

π = lim
R→∞

� R

−R

1

x2 + 2x+ 1
dx+ lim

R→∞

�

CR

1

z2 + 2z + 2
dz = p.v.

� ∞

−∞

1

x2 + 2x+ 1
dx

using Theorem 32.2 to conclude that the second limit is 0.
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Lecture #34: The Fundamental Theorem of Algebra

Theorem 34.1 (Fundamental Theorem of Algebra). Every nonconstant polynomial with
complex coefficients has at least one root.

Proof. Suppose to the contrary that

P (z) = a0 + a1z + · · ·+ am−1z
m−1 + amz

m

is a nonconstant polynomial of degree m (so that m ≥ 1) having no roots. Without loss of
generality, assume that am = 1. Consequently,

Q(z) =
1

P (z)

must be an entire function. Let M = max{1, |a0|, |a1|, . . . , |am−1|}. Using an argument
similar to that given in the supplement to the proof of Theorem 32.2, we find that if |z| ≥
2mM , then

|Q(z)| =
����

1

P (z)

���� ≤
1

|z|m/2 ≤ 2

(2mM)m
.

On the other hand, if |z| ≤ 2mM , then we have a continuous real-valued function, namely
|Q(z)|, on a closed disk. From calculus, we conclude that the function must be bounded.
Hence,

Q(z) =
1

P (z)

is bounded and entire. Thus, Q(z) must be constant and therefore P (z) must itself be
constant. However, we assumed that m ≥ 1 so this contradicts our assumption and we
conclude that P (z) must have at least one root.

Corollary 34.2. If P (z) = a0 + a1z + · · ·+ am−1z
m−1 + amz

m is a polynomial of degree m,
then P (z) has m complex roots. Moreover, if the coefficients aj ∈ R for all j, then the roots
come in complex conjugate pairs.

Proof. By Theorem 34.1 we know that P (z) has at least one root. Thus, suppose that z1 is
a root of P (z). This means that we can write

P (z) = (z − z1)(b0 + b1z + · · ·+ bm−1z
m−1)

for some coefficients b0, b1, . . . , bm−1. However, Q(z) = b0 + b1z + · · · + bm−1z
m−1 is a poly-

nomial of degree m− 1, and so applying Theorem 34.1 to this polynomial, we conclude that
Q(z) has at least one root. This means that P (z) must have at least two roots. Continuing
in this fashion yields m complex roots for P (z).
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Suppose that P (z) = a0 + a1z + · · ·+ am−1z
m−1 + amz

m with aj ∈ R for all j. Suppose that
z0 is a root of P (z) so that P (z0) = 0. Consider z0. We find

P (z0) = a0 + a1z0 + · · ·+ am−1(z0)
m−1 + am(z0)

m = a0 + a1z0 + · · ·+ am−1z
m−1
0 + amz

m
0

= a0 + a1z0 + · · ·+ am−1z
m−1
0 + amz

m
0

= P (z0)

= 0

= 0.

Thus, if z0 is a root of P (z), then so too is z0. In other words, the roots of a polynomial
with real coefficients come in conjugate pairs.

Example 34.3. Show that the roots of P (z) = z
3 − 1 come in conjugate pairs.

Solution. From Theorem 34.1 we know that P (z) has three roots. They are z1 = 1,
z2 = e

2πi/3, and z3 = e
4πi/3. Observe that z1 is real so that it is self-conjugate. Furthermore,

z2 = e
−2πi/3 = e

4πi/3 = z3 so that z2 and z3 are a conjugate pair of roots.
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