
Math 312 Fall 2012 Final Exam – Solutions

1. Since ez 6= 0 for all z ∈ C, we can multiply ez + 2e−z = 3 by ez and simplify obtain
e2z − 3ez + 2 = 0. Notice that e2z − 3ez + 2 = (ez − 2)(ez − 1) and so e2z − 3ez + 2 = 0
iff either ez − 2 = 0 or ez − 1 = 0. Consider first the equation ez = 1. Since e2πki = 1 for
any k ∈ Z, we conclude that ez − 1 = 0 iff z ∈ {2πki, k ∈ Z}. Now consider ez = 2. Since
elog 2+2πki = 2 for any k ∈ Z, we conclude that ez − 2 = 0 iff z ∈ {log 2 + 2πki, k ∈ Z}. This
implies that if z ∈ {2πki, k ∈ Z} ∪ {log 2 + 2πki, k ∈ Z} = {2πki, log 2 + 2πki, k ∈ Z},
then ez + 2e−z = 3. Since we are only interested in those z with |z| < 10, we see that

z ∈ {0, 2πi, −2πi, log 2, log 2 + 2πi, log 2− 2πi}.

2. Consider the function g(z) = −iz. Since the action of g(z) is rotation clockwise by an
angle of π/2, we see that the image of D under g(z) is E = {z : Re(z) < 0, 0 < Im(z) < π/2}.
Now let f(z) = ez so that w = f(g(z)). The image of D under w is exactly the image of E
under f(z). Observe that we can express E as E = {z = x + iy : x < 0 and 0 < y < π/2}.
Since ez = exeiy and x < 0, we conclude that |ez| = ex < 1. Moreover, eiy for 0 < y < π/2
describes that part of the unit circle centred at 0 in the first quadrant. Thus, the image of
D in the w-plane is exactly {w ∈ C : |w| < 1, 0 < Arg(w) < π/2}.
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(ii) We now observe that
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(iii) We now observe that
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4. Observe that (z2 + 1)3 = (z − i)3(z + i)3 so that
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has poles of order 3 at z1 = i and z2 = −i. Note that only z1 is inside C. Since
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we conclude from the residue theorem that∫
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5. Suppose that C = {|z| = 1} oriented counterclockwise is parametrized by z(θ) = eiθ,
0 ≤ θ ≤ 2π. Since z′(θ) = ieiθ = iz(θ), we obtain∫ 2π
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so that f(z) has simple poles at z0 = 0, z1 = 1/2, and z2 = 2.
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Notice that only z0 = 0 and z1 = 1/2 are inside C. Therefore,
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By the residue theorem we obtain∫ 2π
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6. (a) Consider z5−1 = 0. The solutions of this equation are z0 = 1, z1 = e2πi/5, z2 = e4πi/5,
z3 = e6πi/5, and z4 = e8πi/5. Since (z − 1)(z4 + z3 + z2 + z + 1) = (z5 − 1), we conclude that
the roots of (z − 1)(z4 + z3 + z2 + z + 1) must equal the roots of z5 − 1. Clearly, z0 = 1 is
the root of (z − 1). This means that the four roots of P (z) = z4 + z3 + z2 + z + 1 must be
the other four roots of z5 − 1, namely z1 = e2πi/5, z2 = e4πi/5, z3 = e6πi/5, and z4 = e8πi/5.

(b) Notice that we can write

f(z) =
z2 − z
z9 − z4

=
z(z − 1)
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=
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which is a ratio of polynomials. This means that isolated singular points will occur precisely
where the denominator is 0. Notice that z4(z−1)P (z) has 6 zeros, namely z0 = 1, z1 = e2πi/5,
z2 = e4πi/5, z3 = e6πi/5, z4 = e8πi/5, and z5 = 0. Now consider the numerator, z(z− 1), which
has zeros at z0 = 1 and z5 = 0. Since the order of the zero at z0 = 1 is the same in both
the numerator and the denominator, we conclude z0 = 1 is a removable singularity. Since
the order of the zero at z5 = 0 is 1 in the numerator and 4 in the denominator, we conclude
that z5 = 0 is a pole of order 4− 1 = 3. Finally, since the zeros of P (z) are not zeros of the
numerator, we conclude that z1 = e2πi/5, z2 = e4πi/5, z3 = e6πi/5, and z4 = e8πi/5 are each
simple poles.

7. Suppose that f(z) = z3e−1/z. Observe that z0 = 0 is an isolated singular point of f(z)
that lies inside C. Therefore, we conclude from the residue theorem that∫

C

f(z) dz = 2πiRes(f(z); 0).

However, since z0 = 0 is clearly an essential singularity, the only way to compute Res(f(z); 0)
is to determine the Laurent series for f(z) valid for |z| > 0. Now,
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Thus, Res(f(z); 0) = 1
4!

so that ∫
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8. (a) Observe that the Laurent series for h(w) = sinw
w

about the point 0 is
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This tells us that w = 0 is a removable singularity for h(w). Hence, in order for g(w) to be
analytic at w = 0, it must be the case that

g(0) = lim
w→0

sinw

w
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Since g(0) = w0, we conclude that w0 = 1.

(b) Observe that if w 6= 0, then g(w) = 0 if and only if sinw = 0. Since sinw = 0 if and
only if w = kπ for some k ∈ Z, we conclude that g(w) = 0 if and only if w = kπ for some
k ∈ Z \ {0}. Since |kπ| > 3 for any k ∈ Z \ {0}, we conclude that g(w) 6= 0 for any |w| ≤ 3.

(c) Suppose that f is entire. Fix z with |z| < 1 and consider the function

F (ζ) =
f(ζ)

g(ζ − z)

defined for any |ζ| ≤ 2. As a result of (b), we know that F (ζ) is analytic inside and on the
unit circle C since g(ζ − z) 6= 0 for any |z| < 1 and |ζ| ≤ 2. (Indeed, suppose that |z| < 1
and |ζ| ≤ 2. If w = ζ − z, then by the triangle inequality |ζ − z| ≤ |ζ| + |z| ≤ 2 + 1 = 3.
Thus from (b), we have g(ζ − z) = g(w) 6= 0.) Therefore, we can apply the Cauchy integral
theorem to conclude

F (z) =
1

2πi

∫
C

F (ζ)

ζ − z
dζ.

However, since g(0) = 1 by (a), we find
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Furthermore, if |ζ| ≤ 2 with ζ 6= z, then
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so that
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as required.


