Solutions to Math 305 Midterm Exam #2

1. We find
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By the triangle inequality,
|8n + 21| < 8n + 21n = 29n

for all n > 1. Moreover,
13n% — 2n| = 3n? — 2n > 3n* — 2n? =n?

provided that 3n%? — 2n > 0 and —2n > —2n%. Note that if n > 1, then it is certainly true
that 3n > 2, or equivalently, 3n? — 2n > 0. Moreover, if n > 1, then clearly 2n < 2n? so
that —2n > —2n2. In brief, if n > 1, then

4n® +7 4‘ 18n + 21| 29n 29

3n2—2n 3|~ 3[3n2—2n| ~ 302 3n’
Thus, let € > 0 be given. If
Vo2
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and n > N, then
dn?+7 4 29 29
—_— | < — < — =€
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proving that
i +7 4

m ———— =
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as required.

2. Let € > 0 be given. Since {a,} is a Cauchy sequence, there exists an NV such that

€
la, — anm| < 3

whenever n,m > Nj. Since {b,} is a Cauchy sequence, there exists an Ny such that
€
by — b < =
by bl <
whenever n,m > N,. Therefore, let N = max{Ny, No}. If n,m > N, then
€

5~ °

€0 = el = (@0 = bn) = (@ = b)| < a0 = | + |bw = bu| < 5 +

so that {c,} is, in fact, a Cauchy sequence.



3. Since {b,} is bounded, there exists some M such that
bn] < M

for all n. Therefore, let ¢ > 0 be given. Since a,, — 0, there exists an N such that if n > N,
then

@, = 0] = Jag] < —

n n| —= M‘

Therefore, if n > N, then
by — 0] = |anbn| = |an| - [ba] < % M=c¢

proving that a,b, — 0 as required.

4. (a) Suppose that ¢, = a, + b, for all n. Let A denote the set of subsequential limits
of {a,}, let B denote the set of subsequential limits of {b,}, and let C denote the set of
subsequential limits of {c,} so that

limsupa, =supA € R, limsupb, =supB € R, and limsupc, =supC € R

n—o0 n—oo n—oo

using the facts that {a,} and {b,} are bounded sequences. Moreover, the facts that {a,}
and {b,} are bounded sequences also imply that A # (), B # 0, and C # (). Thus, we need
to show that

supC < sup A + sup B.

Suppose that ¢, is a convergent subsequence of ¢, with limit ¢ € C. Since ¢,, = a,, + by,
there are two possibilities. Either (i) a,, is a convergent subsequence of a,, with limit a € A
and b,, is a convergent subsequence of b, with limit b € B or (ii) a,, is not a convergent
subsequence of a, and b,, is not a convergent subsequence of b,. (By the limit theorems,
it is not possible for ¢,, to converge along with exactly one of a,, and b,,.) We will now
consider the two cases separately. For the first case, suppose that ¢; = supC and assume
that ¢,, is a convergent subsequence of ¢, with limit ¢;. Since ¢,, = a,, +b,, with ¢, — c1,
an, — a, and b, — b, we conclude that

cpo=a+b<supA+supB

since a < sup A and b < sup B. For the second case, suppose again that ¢; = sup C and that
cn, 1s a convergent subsequence of ¢, with limit ¢;. Since ¢,, = a,, + b,,, but neither a,,
nor by, converge, we need to consider further subsequences. Thus, let Uy, be a convergent
subsequence of a,, with limit a € A. The subsequence Cny, of ¢,, necessarily converges to
¢y since ¢,, — c1, and so it follows that bnkj is a convergent subsequence of b,, with limit,
say, b € B. Hence, we conclude as before that

¢y =a+b<sup A+ supB.

In either case, we have supC < sup A + sup B which completes the proof.



4. (b) Suppose that a, = (—1)" and b, = (—1)"™! so that ¢, = a, + b, = 0 for all n. Note
that

limsupa, =limsupb, =1 whereas limsupc, =0
n—oo n—oo n—oo

so that
0 = limsup(a, + b,) < limsupa, + limsupb, =1+ 1= 2.

n—oo n—oo n—oo

5. Let a € R be arbitrary. Note that
2 —a® = (z — a)(2* + ar + a?).
Therefore, if v — a| < 1, then |z| = |xt —a +a| < |z —a| + |a| < 1+ |a| so that
12 + az + a®| < |z)* + |al|z| + a® < (1 + |a])® + |a|(1 + |a|) + a® = 1 + 3|a| + 3a®.

Let € > 0 be given and choose

§=mind —— 1\
1 + 3|a| + 3a?

This implies that if |z — a| < J, then

|2? — a®| = |z — a||2® + ax + a®| < ¢
so that
lim 2° = o*
r—a

as required.

6. (a) Recall that f is continuous at ¢ if and only if f(x,) converges to f(c) for any
sequence x, converging to c. Suppose now that x, converges to 2. Since 2 € Q and
f(2) = 10, we must show that f(z,) — 10. Let € > 0 and find N such that n > N implies
|z, — 2| < e. There are now two possibilities. If z,, € Q and n > N, then f(z,) = bz, so
that | f(z,)— 10| = |5z, — 10| = 2|z, —5| < 2¢. If ¥, € R\Q and n > N, then f(z,) = 22 +6
so that |f(z,) — 10| = |22+ 6 — 10| = |22 — 4| = |z, — 2||z, + 2. Since |z, — 2| < & we know
that |z, + 2| < |z, — 2| + 4 < ¢ + 4 which implies that

|f(x,) — 10| = |z, — 2|z, + 2| < e(e +4).

In either case, if n > N, then we can make |f(x,) — 10| arbitrarily close to 0 proving that
f(x,) — f(2) whenever x, — 2.

6. (b) To show that f is discontinuous at 1, we must show that there exists a sequence
x, — 1 for which f(z,) does not converge to f(1). Suppose that z,, € R\ Q with z,, — 1.
As an example, take x,, = 1 — (v/2n)~!. Since z,, € R\ Q, we know that

flz,) =22 4+6 —T.

However, since 1 € Q, we know that f(1) = 5. Therefore, f(z,) does not converge to f(1)
proving that f is not continuous at 1.



