Solutions to Math 305 Midterm Exam #1

1. (a) If S C Ris a set, then a is the supremum of S if the following two conditions hold:
(i) a > s for every s € S, and (ii) if @’ > s for all s € S, then a < @’. The real number b is
the infimum of S if the following two conditions hold: (i) b < s for all s € S and (ii) if ¥’ < s
for all s € S, then b > V.

1. (b) The completeness axiom states the following. If S C R is a nonempty and bounded
set, then sup S exists as a real number.

1. (c) Let b = inf S so that b < z for every z € S. Therefore, —5b > —bz for all z € S
implying that —5b > y for all y € T'. Thus, —5b is an upper bound for 7. To show that —5b
is the least upper bound (or supremum) of 7" we will show that —5b < a’ for any a’ such that
a’ >y for all y € T. Consider such an a/. Since @’ > y for all y € T', we know that o’ > —5zx
for all x € S. That is, —a’/5 < x for every x € S. This shows that —a’/5 is a lower bound
for S. Since b is the infimum of S we know that —a’/5 < b, or equivalently a’ > —5b. Hence,
sup T = —5bb, or equivalently, supT = —5inf S.

2. (a) The Heine-Borel Theorem states the following. A set S C R is compact if and only
if S is closed and bounded.

2. (b) (Using the definition of compact.) In order to prove that S UT is compact, we
must show that any open cover of S UT contains a finite subcover. Thus, suppose that F
is an open cover of S UT. Consider the collections S = FNS ={FNS: F e F} and
T=FNT={FNT:F € F} sothat S is an open cover of S and 7T is an open cover of
T. Since S is compact, there is a finite subcover of S, call it Sy, that covers S. Since T is
compact, there is a finite subcover of T, call it 7y, that covers T. Therefore, the collection
So U T is a subcover of F which is also a finite cover of S UT (since the union of a finite
number of objects is finite). Hence, any open cover of SUT contains a finite subcover proving
that S UT is compact.

2. (b) (Using the Heine-Borel Theorem.) In order to prove that SUT is compact, we must
show that S U T is closed and bounded. Since S is compact, we know that S is closed and
bounded, and since 7T is compact we know that T is closed and bounded. In order to show
that S U T is bounded, we need to show that there exists some N € N such that |z| < N
for all x € SUT. Since S is bounded, we know that there exists some n € N such that
|s| < mn for all n € S, and since T is bounded, we know that there exists some m € N such
that [t| < m for all t € T. Therefore, if we set N = m +n and let z € SUT, then either
x € S in which case x < m < N or x € T in which case x < n < N. If it happens that
x € SNT, then |z| < max{n,m} < N. In any case, we see that |z| < N proving that
S UT is bounded. To show that S U T is closed, we need to prove that the union of two
closed sets is closed. Equivalently, we need to prove that (S UT)¢ = S°NT* is open. Since
S¢ is open, we know that if s € S then there exists an £; such that N(s;e;) C 5S¢, and
since T° is open, we know that if ¢ € T, then there exists an €5 such that N(z;e9) C S€.
Hence, suppose that x € SN T and let ¢ = min{ey, e} so that N(x;¢) C N(z;e,) C S¢
and N(x;e) C N(z;e2) C T which implies that N(z;¢) C S°NT*°. This implies that S°N7T*
is open so that (S°NT°)¢=SUT is closed.



3. (a) To show that f is not bijective, it is sufficient to show that there exist points
x1 € [—2,2] and z9 € [—2,2] with x; # x9 such that f(z;) = f(z2). If we take x; = —1 and
xe = 1, then z1 # x5 but f(z1) = f(x2) = 1. Hence, f is not bijective.

3. (b) To show that f~!(S) is an open set, it is sufficient to show that if z € f~!(S),
then there exists some & > 0 such that N(z;e) C f7!(S). Therefore, let x € f~1(S)
so that z? € S. Consider N(z;¢) = (z — e, + ¢€). Since f(x) = 2%, we know that
f(N(x;¢)) = f((zx —e,x+¢)) = ((x —¢)? (z + €)?). Since 22 € S and S is open we
know that there exists some g; > 0 such that N(2?;e;) = (2% — 1,22 + 1) C S. Hence, the
proof will be completed if we can choose € such that ((x —€)?, (z + €)?) C 2% + ;. Observe
that (z + €)? = 22 + 2ze + €% and so we choose ¢ such that 2ze + &2 < ¢;.

3. (c) Observe that f~YT°) = {z € [-2,2] : f(z) € T} = {x € [-2,2] : f(x) ¢ T}.
However, the set of = € [—2,2] such that f(z) ¢ T is, by definition, the complement of the
set of z € [—2,2] such that f(x) € T. Therefore, we find

AT ={ze-2,2): fo) ¢ T} ={x € [-2,2]: f(x) e T} = [f(D)
as required.

4. We claim that
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Suppose first that = 0 and let € > 0 be arbitrary. The Archimedean property implies that
there exists some m € N such that 0 < 1/m < e. Moreover, since R is complete, we know
that there exists some y € R such that 0 < 1/(m + 1) <y < 1/m < e. Thus, y € S and
y € N(0;¢) so that N(z;6) NS # (0. Since 0 ¢ S we conclude that N(0;¢) NS¢ # () so
that 0 € bd S. Now assume that x = 1/n for some n € N and let ¢ > 0 be arbitrary. Since
1/n ¢ S we conclude that N(1/n;e) NS¢ # (. Since R is complete, we know that if there
exists some irrational y with
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for every e > 0. Thus, y € S and y € N(1/n;e) so that N(1/n;e) NS # O for every £ > 0.
Hence, we have shown that
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To show the reverse containment, suppose that x € (0,1) with « # 1/n for some n € N. The

Archimedean property implies that there exists some m € N such that 1/(m+1) <z < 1/m.
If we set

then
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Thus, © ¢ bdS. If x < 0, let ¢ = —x/2 so that N(z;¢) N (0,1) = 0 so that ¢ bdS. If
x>1,let e = (z —1)/2 so that N(x;¢) N (0,1) = 0 so that ¢ bd S. Thus we have shown
that
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5. We claim that bd S = [0, 1]. Suppose that
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For any ¢ > 0, we know that N(y;e) contains irrational numbers so that N(y; )N (R\S) # 0.
But we know that N(y;e) also contains some r € Q such that 1/(n+ 1) <r < 1/n. Thus,
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for every n € N. Observe 0 ¢ S so that we cannot immediately conclude that N(0;)NS # (.
However, we knows that if ¢ > 0, then there exists some n such that 0 < 1/n < & which
implies that
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Thus, N(0;¢) NS # 0 so that 0 € bd S. Since we can write
1 1
1] = -
o= (00U |

neN

we conclude that [0,1] € bd S. To show that [0,1] = bd .S, suppose that y ¢ [0, 1] so that
either y <O ory > 1. If y <0, let e = —y/2 so that N(y;e) N[0,1] = () so that y ¢ bd S.
Ify>1,let e = (y — 1)/2 so that N(y;e) N [0,1] = 0 so that y ¢ bd S. Thus, if y ¢ [0, 1],
then y ¢ bd S. This implies that bd .S = [0, 1].

6. We claim that S’ = {—1/2,1/2} so that c] S = S U S’". Observe that
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so that the terms get arbitrarily close to 1/2. Therefore,
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get arbitrarily close to —1/2 while the terms in
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get arbitrarily close to 1/2. Hence, we find S" = {—1/2,1/2}. To prove that this is indeed
S’, we know from the Archimedean property that for every € > 0 there exists an n such that
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This means that for every ¢ > 0 we have N*(1/2,)NS # () and N*(—1/2,)NS # 0 implying
that {—1/2,1/2} C S. On the other hand, if x > 1/2 or x < —1/2 and ¢ = (|z| — 1/2)/2,
then N*(1/2,¢) NS = 0 and N*(—1/2,¢) NS = @. Similarly, if —1/3 < z < 2/5 and
e = max{|2/5 — z|,| — 1/3 — z|}/2, then N*(z,e) NS = (). Finally, if 2/5 < z < 1/2, then
by the Archimedean property, there exists an n such that

n cp< n+2
I‘ —_—
2n+1 2n+2)+ 1’

while if —1/2 < x < —1/3, then by the Archimedean property, there exists an n such that
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This implies that S = {—1/2,1/2}.



