
Math 305 Fall 2011
Open and Closed Sets

Definition. Suppose that S ⊆ R is a set. We say that a point x ∈ S is an interior point
of S if there exists some ε > 0 such that N(x; ε) ⊆ S. We write intS to denote the set of
all interior points of S. We say that a point x ∈ S is a boundary point of S if for every
ε > 0 both N(x; ε) ∩ S 6= ∅ and N(x; ε) ∩ (R \ S) 6= ∅. We write bdS to denote the set of
all boundary points of S. We say that S is closed if bdS ⊆ S and we say that S is open if
bdS ⊆ (R \ S).

Theorem. The set S ⊆ R is open if and only if S = intS.

Proof. Suppose that S = intS. This implies that for every x ∈ S, there exists an ε > 0 (the
ε may depend on the particular x chosen) such that N(x; ε) ⊆ S. Therefore, it must be the
case for this x and the associated ε that N(x; ε) ∩ (R \ S) = ∅. Therefore, x cannot be a
boundary point of S; that is, x /∈ bdS. In other words, we have shown that S ∩ (bdS) = ∅
so that the only possible points in bdS come from points not in S; that is, bdS ⊆ (R \ S).
Hence, by definition, S is open.

On the other hand, suppose that S is open. This means that bdS ⊆ (R\S) or, equivalently,
bdS ∩S = ∅. Thus, if x ∈ S, then there must exist an ε > 0 such that N(x; ε)∩ (R \S) = ∅
(for otherwise x would be a boundary point). Hence, N(x; ε) ⊆ S so that x ∈ intS. As this
is true for every x ∈ S, it must be the case that S ⊆ intS. Since it is always the case that
intS ⊆ S, we conclude that S = intS.

Since we have shown both implications, the proof is complete.

As a result of the definition of open set and the previous theorem, we have a useful way
of determining whether or not a set is open. It is simply a restatement of what S = intS
means.

Corollary. The set S is open if and only if for every x ∈ S, there exists an ε > 0 such that
N(x; ε) ⊆ S.

We can use this corollary to prove the following result.

Theorem. If {Eα : α ∈ I} is an arbitrary collection of open sets, then E =
⋃
α∈I

Eα is open.

Proof. To prove that E is open, we will show that for every x ∈ E, there exists an ε > 0
such that N(X; ε) ⊆ E. Let x ∈ E. Since E is the union of {Eα : α ∈ I}, it must be the
case that there exists some α0 ∈ I such that x ∈ Eα0 . The fact that Eα0 is open means that
there is some ε > 0 such that N(x; ε) ⊆ Eα0 . (We are actually using the previous corollary
at this step.) Since N(x; ε) ⊆ Eα0 , it is necessarily the case that

N(x; ε) ⊆
⋃
α∈I

Eα.

Hence, we have shown that for an arbitrary x ∈ E, there is some ε-neighbourhood of X that
is contained in E; that is, E is open by the previous corollary.


