Mathematics 305 Fall 2011 Final Exam - Solutions

1. Suppose that $E \subseteq \mathbb{R}$ is nonempty and let $x \in \mathbb{R}$.
(a) We say $x \in \operatorname{int} E$ if there exists some $\varepsilon>0$ such that $N(x ; \varepsilon) \cap E^{c}=\emptyset$.
(b) We say $x \in \operatorname{bd} E$ if $N(x ; \varepsilon) \cap E \neq \emptyset$ and $N(x ; \varepsilon) \cap E^{c} \neq \emptyset$ for every $\varepsilon>0$.
(c) We say $x \in \operatorname{cl} E$ if $N(x ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$.
(d) We will establish this result by showing two set containments. To begin, suppose that $x \in(\operatorname{cl} E) \backslash(\operatorname{int} E)$ so that $x \in(\operatorname{cl} E) \cap(\operatorname{int} E)^{c}$. Since $x \notin \operatorname{int} E$ there does not exist any $\varepsilon>0$ such that $N(x ; \varepsilon) \cap E^{c}=\emptyset$. This is logically equivalent to saying that $N(x ; \varepsilon) \cap E^{c} \neq \emptyset$ for every $\varepsilon>0$. Since $x \in \operatorname{cl} E$, we know $N(x ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$. Hence, $N(x ; \varepsilon) \cap E^{c} \neq \emptyset$ for every $\varepsilon>0$ and $N(x ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$ so that by definition $x \in \operatorname{bd} E$. Conversely, suppose that $x \in \operatorname{bd} E$ so that $N(x ; \varepsilon) \cap E^{c} \neq \emptyset$ for every $\varepsilon>0$ and $N(x ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$. Since $N(x ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$, we conclude by definition that $x \in \operatorname{cl} E$. Since $N(x ; \varepsilon) \cap E^{c} \neq \emptyset$ for every $\varepsilon>0$ we conclude that there does not exist any $\varepsilon>0$ such that $N(x ; \varepsilon) \cap E^{c}=\emptyset$. Thus, by definition, $x \notin \operatorname{int} E$ so that $x \in(\operatorname{int} E)^{c}$. Therefore, $x \in(\mathrm{cl} E) \cap(\operatorname{int} E)^{c}=(\mathrm{cl} E) \backslash(\operatorname{int} E)$.
2. There does not exist a subset $E \subseteq \mathbb{Q}$ such that $\operatorname{cl} E=[0,1] \cup\{\sqrt{2}\}$. Here is the proof. Suppose that $E \subseteq \mathbb{Q}$. By definition, $\operatorname{cl} E=E \cup E^{\prime}$ where E^{\prime} is the set of accumulation points of E. Since $\sqrt{2} \notin \mathbb{Q}$, in order for $\sqrt{2}$ to be a point of $\mathrm{cl} E$, it is necessarily the case that $\sqrt{2} \in E^{\prime}$. By definition, $\sqrt{2} \in E^{\prime}$ if and only if $N^{*}(\sqrt{2} ; \varepsilon) \cap E \neq \emptyset$ for every $\varepsilon>0$. In particular, choosing $\varepsilon=1 / 2$ implies that $N^{*}(\sqrt{2} ; \varepsilon)=(\sqrt{2}-1 / 2, \sqrt{2}) \cup(\sqrt{2}, \sqrt{2}+1 / 2)$ contains a point of E. Call this point y. However, if $y \in E$, then trivially $y \in \operatorname{cl} E$. However, by construction, $y \in \mathbb{Q}$ with $y>1$ so that $y \notin[0,1] \cup\{\sqrt{2}\}=\mathrm{cl} E$. This contradicts the fact that $y \in \mathrm{cl} E$ and proves no such $E \subseteq \mathbb{Q}$ can exist.
3. In order to prove this result, we must establish two implications. For the first implication, suppose that $x \in \operatorname{cl} S$ so that $x \in S \cup S^{\prime}$. If $x \in S$, then the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=x$ for all $n \in \mathbb{N}$ trivially converges to x. Now suppose that $x \in S^{\prime}$ so that $N^{*}(x ; \varepsilon) \cap S \neq \emptyset$ for every $\varepsilon>0$. Let $\varepsilon_{n}=1 / n$ for $n \in \mathbb{N}$ and choose $x_{n} \in N^{*}\left(x ; \varepsilon_{n}\right) \cap S$ which is possible by the assumption $x \in S^{\prime}$. The sequence $\left\{x_{n}\right\}$ converges to x by the squeeze theorem since

$$
\left|x_{n}-x\right|<\varepsilon_{n}=\frac{1}{n}
$$

and $1 / n \rightarrow 0$ as $n \rightarrow \infty$. Hence, $x \in \operatorname{cl} S$ implies there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in S$ such that $x_{n} \rightarrow x$. To prove the reverse implication, suppose that there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in S$ such that $x_{n} \rightarrow x$. To show that $x \in \operatorname{cl} S$, we must show that $N(x ; \varepsilon) \cap S \neq \emptyset$ for every $\varepsilon>0$. Since $x_{n} \rightarrow x$, we know that for every $\varepsilon>0$ there exists an N such that $n>N$ implies

$$
\left|x_{n}-x\right|<\varepsilon
$$

In particular, (using $n=N+1$) we know that $\left|x_{N+1}-x\right|<\varepsilon$. However, since $N(x ; \varepsilon)=$ $\{y:|x-y|<\varepsilon\}$, we know that $x_{N+1} \in N(x ; \varepsilon)$. By assumption, $x_{N+1} \in S$ and so $x_{N+1} \in N(x ; \varepsilon) \cap S$. As $\varepsilon>0$ was arbitrary, this shows that if there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in S$ such that $x_{n} \rightarrow x$, then $x \in \operatorname{cl} S$.
4. Notice that $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ where

$$
\begin{aligned}
S_{1}=\left\{a_{n}+(-1)^{n}+\frac{1}{n}: n=1,5,9, \ldots\right\} & =\left\{1+(-1)+\frac{1}{n}: n=1,5,9, \ldots\right\} \\
& =\left\{\frac{1}{n}: n=1,5,9, \ldots\right\} \\
& =\left\{1, \frac{1}{5}, \frac{1}{9}, \ldots\right\}, \\
S_{2}=\left\{a_{n}+(-1)^{n}+\frac{1}{n}: n=2,6,10, \ldots\right\} & =\left\{2+(+1)+\frac{1}{n}: n=2,6,10, \ldots\right\} \\
& =\left\{3+\frac{1}{n}: n=2,6,10, \ldots\right\} \\
& =\left\{3 \frac{1}{2}, 3 \frac{1}{6}, 3 \frac{1}{10}, \ldots\right\}, \\
S_{3}=\left\{a_{n}+(-1)^{n}+\frac{1}{n}: n=3,7,11, \ldots\right\} & =\left\{3+(-1)+\frac{1}{n}: n=3,7,11, \ldots\right\} \\
& =\left\{2+\frac{1}{n}: n=3,7,11, \ldots\right\} \\
& =\left\{2 \frac{1}{3}, 2 \frac{1}{7}, 2 \frac{1}{11}, \ldots\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
S_{4}=\left\{a_{n}+(-1)^{n}+\frac{1}{n}: n=4,8,12, \ldots\right\} & =\left\{4+(+1)+\frac{1}{n}: n=4,8,12, \ldots\right\} \\
& =\left\{5+\frac{1}{n}: n=4,8,12, \ldots\right\} \\
& =\left\{5 \frac{1}{4}, 5 \frac{1}{8}, 5 \frac{1}{12}, \ldots\right\} .
\end{aligned}
$$

Observe that each of S_{1}, S_{2}, S_{3}, and S_{4} defines a strictly decreasing sequence. Therefore, $\sup S_{i}=\max S_{i}$ for each $i=1,2,3,4$ and $\min S_{i}$ does not exist for $i=1,2,3,4$. In particular,

$$
\begin{aligned}
& \sup S_{1}=\max S_{1}=1, \quad \sup S_{2}=\max S_{2}=3 \frac{1}{2} \\
& \sup S_{3}=\max S_{3}=2 \frac{1}{3}, \quad \sup S_{4}=\max S_{4}=5 \frac{1}{4}
\end{aligned}
$$

and

$$
\inf S_{1}=0, \quad \inf S_{2}=3, \quad \inf S_{3}=2, \quad \inf S_{4}=5
$$

(a) We find

$$
\sup S=\sup \left\{S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right\}=\sup \left\{1,3 \frac{1}{2}, 2 \frac{1}{3}, 5 \frac{1}{4}\right\}=5 \frac{1}{4}
$$

and

$$
\inf S=\inf \left\{S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right\}=\inf \{0,3,2,5\}=0
$$

(b) Since $5 \frac{1}{4} \in S$ and $0 \notin S$, we conclude

$$
\max S=5 \frac{1}{4} \quad \text { and } \quad \min S \text { does not exist. }
$$

(c) There are 4 accumulation points of S, namely the limit points of S_{i} for $i=1,2,3,4$. Therefore, $S^{\prime}=\{0,2,3,5\}$ so that

$$
\operatorname{cl} S=S \cup S^{\prime}=S \cup\{0,2,3,5\}
$$

5. Observe that $a_{2}=7 / 4$ and $a_{3}=17 / 8$. Therefore, assume that $n \geq 1$ and note that $a_{n+1} \geq a_{n}$ if and only if

$$
\frac{1}{4}\left(2 a_{n}+5\right) \geq a_{n}
$$

which holds if and only if $2 a_{n}+5 \geq 4 a_{n}$ which in turn holds if and only if $2 a_{n} \leq 5$ or, equivalently, if and only if $a_{n} \leq 5 / 2$. We will now show that if $n \geq 1$, then $a_{n} \leq 5 / 2$ which will therefore imply that a_{n} is bounded above and increasing for $n \geq 1$. Observe that $a_{1} \leq 5 / 2$ and $a_{2} \leq 5 / 2$. Therefore, assume that $a_{n} \leq 5 / 2$ for some $n \geq 1$. Hence,

$$
a_{n+1}=\frac{1}{4}\left(2 a_{n}+5\right) \leq \frac{1}{4}\left(2 \cdot \frac{5}{2}+5\right)=\frac{10}{4}=\frac{5}{2} .
$$

Thus, by induction, $a_{n} \leq 5 / 2$ for all $n \geq 1$ and so $\left\{a_{n}\right\}$ is necessarily increasing. Since $\left\{a_{n}\right\}$ is bounded above and increasing, we know $\left\{a_{n}\right\}$ must converge. Therefore, if $a=\lim a_{n}$, then a satisfies

$$
a=\frac{1}{4}(2 a+5) \quad \text { or, equivalently, } \quad 4 a=2 a+5 \quad \text { and so } \quad a=\frac{5}{2} .
$$

6. In order to prove that $\left\{a_{n}\right\}$ converges it is sufficient to prove that $\left\{a_{n}\right\}$ is bounded since assumption (ii) tells us that $\left\{a_{n}\right\}$ is increasing and we know that a bounded, increasing sequence is necessarily convergent. Note that assumption (i) tells us that $\left|a_{n}\right|=a_{n}$ for all n. Suppose that $\left\{a_{n_{k}}\right\}$ is a convergent subsequence of $\left\{a_{n}\right\}$ which exists by assumption (iii). This implies that $\left\{a_{n_{k}}\right\}$ is bounded. Thus, let M be such that $a_{n_{k}}<M$ for all n_{k}. We will now show that $a_{n}<M$ for all n. By assumption, $\left\{a_{n_{k}}\right\}$ is a subsequence of $\left\{a_{n}\right\}$. This means that there are elements in $\left\{a_{n}\right\}$ which are not elements of $\left\{a_{n_{k}}\right\}$. Let $a_{j} \in\left\{a_{n}\right\} \backslash\left\{a_{n_{k}}\right\}$ be one of those elements. By assumption (ii), $\left\{a_{n_{k}}\right\}$ is an increasing sequence and so there exist elements $a_{n_{j}}$ and $a_{n_{j+1}}$ such that $a_{n_{j}} \leq a_{j} \leq a_{n_{j+1}}$. But $a_{n_{j+1}}<M$ which implies that $a_{j}<M$. Thus, $\left\{a_{n}\right\}$ is bounded, increasing, and therefore convergent.
7. (a) Since f is defined on the closed interval $[-1,2]$, it is necessarily the case that $|f(2)|<\infty$. Therefore, set $M=|f(2)|$ and note that by the triangle inequality combined with the inequality stated in the problem that

$$
|f(x)|-|f(2)| \leq|f(x)-f(2)| \leq 5|x-2|
$$

However, if $x \in[-1,2]$, then $|x-2| \leq 3$, and so we conclude that

$$
|f(x)| \leq 5|x-2|+|f(2)| \leq 5(3)+M=15+M<\infty .
$$

Thus, f is bounded on $[-1,2]$ as required.
(b) Since $x_{n} \rightarrow 1$, we know that for every $\varepsilon>0$ there exists some N such that $n>N$ implies $\left|x_{n}-1\right|<\frac{\varepsilon}{5}$. Using the inequality stated in the problem,

$$
\left|f\left(x_{n}\right)-f(1)\right| \leq 5\left|x_{n}-1\right|<5 \cdot \frac{\varepsilon}{5}=\varepsilon
$$

so that $f\left(x_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$ as required.
(c) (Solution 1) By part (a) we know that f is bounded. Therefore, $f\left(x_{n}\right)$ has a convergent subsequence.
(c) (Solution 2) Since the sequence $\left\{x_{n}\right\}$ is bounded, it is necessarily the case that there exists some subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ that converges. Choose this convergent subsequence $\left\{x_{n_{k}}\right\}$ so that the required sequence of integers is $\left\{n_{k}\right\}$. In order to prove that $\left\{f\left(x_{n_{k}}\right)\right\}$ converges, we will prove that it is a Cauchy sequence. Since $\left\{x_{n_{k}}\right\}$ converges, it is necessarily a Cauchy sequence. This means that for every $\varepsilon>0$, there exists some N such that $n_{k}, n_{j}>N$ implies

$$
\left|x_{n_{k}}-x_{n_{j}}\right|<\frac{\varepsilon}{5}
$$

Hence, using the inequality stated in the problem,

$$
\left|f\left(x_{n_{k}}\right)-f\left(x_{n_{j}}\right)\right| \leq 5\left|x_{n_{k}}-x_{n_{j}}\right|<5 \cdot \frac{\varepsilon}{5}=\varepsilon,
$$

and so $\left\{f\left(x_{n_{k}}\right)\right\}$ is a Cauchy, and therefore convergent, sequence.
8. Note that

$$
\left|2 x^{2}-3 x+5-10\right|=\left|2 x^{2}-3 x-5\right|=|x+1||2 x-5| .
$$

Hence, if $|x+1|<1$, then $|x|=|x+1-1| \leq|x+1|+1<1+1=2$ and so $|2 x-5| \leq$ $2|x|+5<2(2)+5=9$. Therefore, if $\varepsilon>0$ is given and $\delta=\min \{1, \varepsilon / 9\}$, then

$$
\left|2 x^{2}-3 x+5-10\right|=|x+1||2 x-5|<\varepsilon
$$

whenever $|x+1|<\delta$.
9. Notice that

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4} .
$$

By definition, f is continuous at 4 if

$$
f(4)=\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}
$$

Hence, we should define $f(4)=1 / 4$.

