
Mathematics 305 Fall 2011 Final Exam – Solutions

1. Suppose that E ⊆ R is nonempty and let x ∈ R.

(a) We say x ∈ intE if there exists some ε > 0 such that N(x; ε) ∩ Ec = ∅.

(b) We say x ∈ bdE if N(x; ε) ∩ E 6= ∅ and N(x; ε) ∩ Ec 6= ∅ for every ε > 0.

(c) We say x ∈ clE if N(x; ε) ∩ E 6= ∅ for every ε > 0.

(d) We will establish this result by showing two set containments. To begin, suppose that
x ∈ (clE) \ (intE) so that x ∈ (clE) ∩ (intE)c. Since x /∈ intE there does not exist any
ε > 0 such that N(x; ε)∩Ec = ∅. This is logically equivalent to saying that N(x; ε)∩Ec 6= ∅
for every ε > 0. Since x ∈ clE, we know N(x; ε) ∩ E 6= ∅ for every ε > 0. Hence,
N(x; ε) ∩ Ec 6= ∅ for every ε > 0 and N(x; ε) ∩ E 6= ∅ for every ε > 0 so that by definition
x ∈ bdE. Conversely, suppose that x ∈ bdE so that N(x; ε) ∩ Ec 6= ∅ for every ε > 0
and N(x; ε) ∩ E 6= ∅ for every ε > 0. Since N(x; ε) ∩ E 6= ∅ for every ε > 0, we conclude
by definition that x ∈ clE. Since N(x; ε) ∩ Ec 6= ∅ for every ε > 0 we conclude that there
does not exist any ε > 0 such that N(x; ε) ∩ Ec = ∅. Thus, by definition, x /∈ intE so that
x ∈ (intE)c. Therefore, x ∈ (clE) ∩ (intE)c = (clE) \ (intE).

2. There does not exist a subset E ⊆ Q such that clE = [0, 1] ∪ {
√

2 }. Here is the proof.
Suppose that E ⊆ Q. By definition, clE = E ∪ E ′ where E ′ is the set of accumulation
points of E. Since

√
2 /∈ Q, in order for

√
2 to be a point of clE, it is necessarily the case

that
√

2 ∈ E ′. By definition,
√

2 ∈ E ′ if and only if N∗(
√

2; ε) ∩ E 6= ∅ for every ε > 0.
In particular, choosing ε = 1/2 implies that N∗(

√
2; ε) = (

√
2− 1/2,

√
2 ) ∪ (

√
2,
√

2 + 1/2)
contains a point of E. Call this point y. However, if y ∈ E, then trivially y ∈ clE. However,
by construction, y ∈ Q with y > 1 so that y /∈ [0, 1] ∪ {

√
2 } = clE. This contradicts the

fact that y ∈ clE and proves no such E ⊆ Q can exist.

3. In order to prove this result, we must establish two implications. For the first implication,
suppose that x ∈ clS so that x ∈ S∪S ′. If x ∈ S, then the sequence {xn} defined by xn = x
for all n ∈ N trivially converges to x. Now suppose that x ∈ S ′ so that N∗(x; ε) ∩ S 6= ∅ for
every ε > 0. Let εn = 1/n for n ∈ N and choose xn ∈ N∗(x; εn) ∩ S which is possible by the
assumption x ∈ S ′. The sequence {xn} converges to x by the squeeze theorem since

|xn − x| < εn =
1

n

and 1/n → 0 as n → ∞. Hence, x ∈ clS implies there exists a sequence {xn} with xn ∈ S
such that xn → x. To prove the reverse implication, suppose that there exists a sequence {xn}
with xn ∈ S such that xn → x. To show that x ∈ clS, we must show that N(x; ε) ∩ S 6= ∅
for every ε > 0. Since xn → x, we know that for every ε > 0 there exists an N such that
n > N implies

|xn − x| < ε.

In particular, (using n = N + 1) we know that |xN+1 − x| < ε. However, since N(x; ε) =
{y : |x − y| < ε}, we know that xN+1 ∈ N(x; ε). By assumption, xN+1 ∈ S and so
xN+1 ∈ N(x; ε) ∩ S. As ε > 0 was arbitrary, this shows that if there exists a sequence {xn}
with xn ∈ S such that xn → x, then x ∈ clS.



4. Notice that S = S1 ∪ S2 ∪ S3 ∪ S4 where

S1 =

{
an + (−1)n +

1

n
: n = 1, 5, 9, . . .

}
=

{
1 + (−1) +

1

n
: n = 1, 5, 9, . . .

}
=

{
1

n
: n = 1, 5, 9, . . .

}
=

{
1,

1

5
,
1

9
, . . .

}
,

S2 =

{
an + (−1)n +

1

n
: n = 2, 6, 10, . . .

}
=

{
2 + (+1) +

1

n
: n = 2, 6, 10, . . .

}
=

{
3 +

1

n
: n = 2, 6, 10, . . .

}
=

{
3

1

2
, 3

1

6
, 3

1

10
, . . .

}
,

S3 =

{
an + (−1)n +

1

n
: n = 3, 7, 11, . . .

}
=

{
3 + (−1) +

1

n
: n = 3, 7, 11, . . .

}
=

{
2 +

1

n
: n = 3, 7, 11, . . .

}
=

{
2

1

3
, 2

1

7
, 2

1

11
, . . .

}
,

and

S4 =

{
an + (−1)n +

1

n
: n = 4, 8, 12, . . .

}
=

{
4 + (+1) +

1

n
: n = 4, 8, 12, . . .

}
=

{
5 +

1

n
: n = 4, 8, 12, . . .

}
=

{
5

1

4
, 5

1

8
, 5

1

12
, . . .

}
.

Observe that each of S1, S2, S3, and S4 defines a strictly decreasing sequence. Therefore,
supSi = maxSi for each i = 1, 2, 3, 4 and minSi does not exist for i = 1, 2, 3, 4. In particular,

supS1 = maxS1 = 1, supS2 = maxS2 = 3
1

2
,

supS3 = maxS3 = 2
1

3
, supS4 = maxS4 = 5

1

4

and
inf S1 = 0, inf S2 = 3, inf S3 = 2, inf S4 = 5.

(continued)
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(a) We find

supS = sup{S1 ∪ S2 ∪ S3 ∪ S4} = sup

{
1, 3

1

2
, 2

1

3
, 5

1

4

}
= 5

1

4

and
inf S = inf{S1 ∪ S2 ∪ S3 ∪ S4} = inf {0, 3, 2, 5} = 0.

(b) Since 51
4
∈ S and 0 /∈ S, we conclude

maxS = 5
1

4
and minS does not exist.

(c) There are 4 accumulation points of S, namely the limit points of Si for i = 1, 2, 3, 4.
Therefore, S ′ = {0, 2, 3, 5} so that

clS = S ∪ S ′ = S ∪ {0, 2, 3, 5} .

5. Observe that a2 = 7/4 and a3 = 17/8. Therefore, assume that n ≥ 1 and note that
an+1 ≥ an if and only if

1

4
(2an + 5) ≥ an

which holds if and only if 2an + 5 ≥ 4an which in turn holds if and only if 2an ≤ 5 or,
equivalently, if and only if an ≤ 5/2. We will now show that if n ≥ 1, then an ≤ 5/2
which will therefore imply that an is bounded above and increasing for n ≥ 1. Observe that
a1 ≤ 5/2 and a2 ≤ 5/2. Therefore, assume that an ≤ 5/2 for some n ≥ 1. Hence,

an+1 =
1

4
(2an + 5) ≤ 1

4

(
2 · 5

2
+ 5

)
=

10

4
=

5

2
.

Thus, by induction, an ≤ 5/2 for all n ≥ 1 and so {an} is necessarily increasing. Since {an}
is bounded above and increasing, we know {an} must converge. Therefore, if a = lim an,
then a satisfies

a =
1

4
(2a+ 5) or, equivalently, 4a = 2a+ 5 and so a =

5

2
.

6. In order to prove that {an} converges it is sufficient to prove that {an} is bounded since
assumption (ii) tells us that {an} is increasing and we know that a bounded, increasing
sequence is necessarily convergent. Note that assumption (i) tells us that |an| = an for all
n. Suppose that {ank

} is a convergent subsequence of {an} which exists by assumption (iii).
This implies that {ank

} is bounded. Thus, let M be such that ank
< M for all nk. We

will now show that an < M for all n. By assumption, {ank
} is a subsequence of {an}. This

means that there are elements in {an} which are not elements of {ank
}. Let aj ∈ {an}\{ank

}
be one of those elements. By assumption (ii), {ank

} is an increasing sequence and so there
exist elements anj

and anj+1
such that anj

≤ aj ≤ anj+1
. But anj+1

< M which implies that
aj < M . Thus, {an} is bounded, increasing, and therefore convergent.
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7. (a) Since f is defined on the closed interval [−1, 2], it is necessarily the case that
|f(2)| < ∞. Therefore, set M = |f(2)| and note that by the triangle inequality combined
with the inequality stated in the problem that

|f(x)| − |f(2)| ≤ |f(x)− f(2)| ≤ 5|x− 2|.
However, if x ∈ [−1, 2], then |x− 2| ≤ 3, and so we conclude that

|f(x)| ≤ 5|x− 2|+ |f(2)| ≤ 5(3) +M = 15 +M <∞.
Thus, f is bounded on [−1, 2] as required.

(b) Since xn → 1, we know that for every ε > 0 there exists some N such that n > N
implies |xn − 1| < ε

5
. Using the inequality stated in the problem,

|f(xn)− f(1)| ≤ 5|xn − 1| < 5 · ε
5

= ε

so that f(xn)→ 1 as n→∞ as required.

(c) (Solution 1) By part (a) we know that f is bounded. Therefore, f(xn) has a convergent
subsequence.

(c) (Solution 2) Since the sequence {xn} is bounded, it is necessarily the case that there
exists some subsequence {xnk

} of {xn} that converges. Choose this convergent subsequence
{xnk
} so that the required sequence of integers is {nk}. In order to prove that {f(xnk

)}
converges, we will prove that it is a Cauchy sequence. Since {xnk

} converges, it is necessarily
a Cauchy sequence. This means that for every ε > 0, there exists some N such that
nk, nj > N implies

|xnk
− xnj

| < ε

5
.

Hence, using the inequality stated in the problem,

|f(xnk
)− f(xnj

)| ≤ 5|xnk
− xnj

| < 5 · ε
5

= ε,

and so {f(xnk
)} is a Cauchy, and therefore convergent, sequence.

8. Note that
|2x2 − 3x+ 5− 10| = |2x2 − 3x− 5| = |x+ 1||2x− 5|.

Hence, if |x + 1| < 1, then |x| = |x + 1 − 1| ≤ |x + 1| + 1 < 1 + 1 = 2 and so |2x − 5| ≤
2|x|+ 5 < 2(2) + 5 = 9. Therefore, if ε > 0 is given and δ = min{1, ε/9}, then

|2x2 − 3x+ 5− 10| = |x+ 1||2x− 5| < ε

whenever |x+ 1| < δ.

9. Notice that

lim
x→4

√
x− 2

x− 4
= lim

x→4

√
x− 2

(
√
x− 2)(

√
x+ 2)

= lim
x→4

1√
x+ 2

=
1√

4 + 2
=

1

4
.

By definition, f is continuous at 4 if

f(4) = lim
x→4

f(x) = lim
x→4

√
x− 2

x− 4
.

Hence, we should define f(4) = 1/4.
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