Mathematics 305 Fall 2011 Final Exam — Solutions

1. Suppose that £ C R is nonempty and let x € R.

(a) We say x € int E if there exists some € > 0 such that N(z;¢) N E¢ = ().
(b) We say x € bd E if N(x;e) N E # () and N(z;e) N EC # () for every € > 0.
(c) Wesay x € cl E if N(z;¢) N E # () for every € > 0.

(d) We will establish this result by showing two set containments. To begin, suppose that
x € (clE) \ (int E) so that z € (cl E) N (int £)¢. Since = ¢ int E' there does not exist any
e > 0 such that N(z;e)NE° = (). This is logically equivalent to saying that N(z;e)NE° # ()
for every ¢ > 0. Since x € clE, we know N(z;e) N E # ) for every ¢ > 0. Hence,
N(x;e) N E¢ #£ () for every e > 0 and N(x;e) N E # () for every € > 0 so that by definition
x € bd E. Conversely, suppose that x € bd E so that N(z;e) N E¢ # ) for every € > 0
and N(z;e) N E # () for every € > 0. Since N(x;¢) N E # () for every e > 0, we conclude
by definition that x € ¢l E. Since N(x;¢) N E° # () for every € > 0 we conclude that there
does not exist any € > 0 such that N(x;¢) N E¢ = (). Thus, by definition, = ¢ int F so that
x € (int E)°. Therefore, z € (1 E) N (int £)° = (cl £) \ (int E).

2. There does not exist a subset £ C Q such that cl £ = [0,1] U {v/2}. Here is the proof.
Suppose that £ C Q. By definition, cl £ = E U E’ where E’ is the set of accumulation
points of E. Since /2 ¢ Q, in order for V2 to be a point of cl E, it is necessarily the case
that v/2 € E'. By definition, v/2 € E’ if and only if N*(v/2;e) N E # () for every ¢ > 0.
In particular, choosing ¢ = 1/2 implies that N*(v/2;¢) = (V2 — 1/2,v/2) U (v/2,v2 + 1/2)
contains a point of F. Call this point y. However, if y € E, then trivially y € cl E. However,
by construction, y € Q with y > 1 so that y ¢ [0,1] U {v/2} = cl E. This contradicts the
fact that y € cl E and proves no such £ C QQ can exist.

3. In order to prove this result, we must establish two implications. For the first implication,
suppose that = € ¢l S so that x € SUS’. If x € 5, then the sequence {z,} defined by z,, = =
for all n € N trivially converges to x. Now suppose that = € S” so that N*(z;e) NS # 0 for
every € > 0. Let ¢, = 1/n for n € N and choose z,, € N*(x;¢,) NS which is possible by the
assumption x € S’. The sequence {x,} converges to = by the squeeze theorem since

|z, — x| <&, =—
n

and 1/n — 0 as n — oo. Hence, x € clS implies there exists a sequence {z, } with z,, € S
such that x,, — x. To prove the reverse implication, suppose that there exists a sequence {z,,}
with z,, € S such that z,, — x. To show that = € ¢l S, we must show that N(z;e) NS # ()
for every € > 0. Since x,, — =, we know that for every £ > 0 there exists an N such that
n > N implies

|z, — 2| <e.

In particular, (using n = N + 1) we know that |zy1 — 2| < . However, since N(z;¢) =
{y : |z —y| < €}, we know that znxy1 € N(x;¢). By assumption, 2y € S and so
Tn+1 € N(z;e) N S. As € > 0 was arbitrary, this shows that if there exists a sequence {z,}
with z, € S such that x,, — x, then x € cl S.



4. Notice that S = 5] U Sy U S3U S, where
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Observe that each of 57, S, S3, and S defines a strictly decreasing sequence. Therefore,
sup S; = max .S; for each i = 1, 2, 3,4 and min S; does not exist for ¢ = 1, 2, 3,4. In particular,
1

supS; =max S; =1, supS; =max Sy = 35,

1 1
sup S3 = max S3 = 25, sup Sy = max Sy = 51
and

inf Sl = 07 inf SQ = 3, inf Sg = 2, inf 84 = 5.

(continued)



(a) We find

1 1 1
sup S = sup{S; U Sy U S3U S} = sup {1,35,25,51} - 54_1

and
inf S = inf{S; U S, US3U S} =inf{0,3,2,5} = 0.

(b) Since 51 € S and 0 ¢ S, we conclude

1
max S = 51 and min S does not exist.

(c) There are 4 accumulation points of S, namely the limit points of S; for i = 1,2,3,4.
Therefore, S’ = {0,2,3,5} so that

cdS=5uUSs=5U{0,2,3,5}.

5. Observe that ay = 7/4 and a3 = 17/8. Therefore, assume that n > 1 and note that
(py1 > an if and only if

1

Z(Qa” +5) > a,

which holds if and only if 2a, + 5 > 4a, which in turn holds if and only if 2a, < 5 or,
equivalently, if and only if a, < 5/2. We will now show that if n > 1, then a, < 5/2
which will therefore imply that a, is bounded above and increasing for n > 1. Observe that
a; < 5/2 and ay < 5/2. Therefore, assume that a,, < 5/2 for some n > 1. Hence,

1 1 ) 10 5
=2, +5)<-(2-245) == =2
ant1 = (20 +9) 4( 2+) 12
Thus, by induction, a,, < 5/2 for all n > 1 and so {a,} is necessarily increasing. Since {a,}
is bounded above and increasing, we know {a,} must converge. Therefore, if a = lima,,
then a satisfies

1 5
a= 1(2(1 +5) or, equivalently, 4a=2a+5 andso a= o

6. In order to prove that {a,} converges it is sufficient to prove that {a,} is bounded since
assumption (ii) tells us that {a,} is increasing and we know that a bounded, increasing
sequence is necessarily convergent. Note that assumption (i) tells us that |a,| = a, for all
n. Suppose that {a,, } is a convergent subsequence of {a, } which exists by assumption (iii).
This implies that {a,,} is bounded. Thus, let M be such that a, < M for all n,. We
will now show that a,, < M for all n. By assumption, {a,, } is a subsequence of {a,}. This
means that there are elements in {a, } which are not elements of {a,, }. Let a; € {a,}\{a,, }
be one of those elements. By assumption (ii), {a,, } is an increasing sequence and so there
exist elements a,, and a,,,, such that a,, < a; < a,,,,. But a,,,, < M which implies that
a; < M. Thus, {a,} is bounded, increasing, and therefore convergent.



7. (a) Since f is defined on the closed interval [—1,2], it is necessarily the case that
|f(2)] < co. Therefore, set M = |f(2)| and note that by the triangle inequality combined
with the inequality stated in the problem that

@) = @) < 1f(@) = F2)] < 5z — 2]
However, if z € [—1,2], then |z — 2| < 3, and so we conclude that
If(x)] <5Blz—2|+|f(2)| <5B)+M=15+ M < .
Thus, f is bounded on [—1, 2] as required.

(b) Since z,, — 1, we know that for every € > 0 there exists some N such that n > N
implies |z, — 1| < §. Using the inequality stated in the problem,
€
F() ~ FO)] <5l —1] <55 =
so that f(x,) — 1 as n — oo as required.

(c) (Solution 1) By part (a) we know that f is bounded. Therefore, f(x,) has a convergent
subsequence.

(c) (Solution 2) Since the sequence {z,} is bounded, it is necessarily the case that there
exists some subsequence {x,, } of {x,} that converges. Choose this convergent subsequence
{z,, } so that the required sequence of integers is {ng}. In order to prove that {f(z,,)}
converges, we will prove that it is a Cauchy sequence. Since {z,, } converges, it is necessarily
a Cauchy sequence. This means that for every € > 0, there exists some N such that
ng,n; > N implies

| Ty, — T, | < =

5
Hence, using the inequality stated in the problem,
€

[f(@n) = f ;)| < Blwn, = 2a;| <5 ¢

and so {f(x,,)} is a Cauchy, and therefore convergent, sequence.

B

8. Note that

12202 — 31 +5— 10| = [22% — 3z — 5| = | + 1||2z — 5|.
Hence, if |[x 4+ 1] < 1, then |z| =[x +1—-1| < |z +1|+1<1+4+1=2andso |2z —5| <
2|z| 4+ 5 < 2(2) + 5 =9. Therefore, if € > 0 is given and 6 = min{1,&/9}, then

22 —3x +5—10| = [ + 1|[2z — 5| < ¢
whenever |z 4 1] < 4.

9. Notice that

-2 -2 1 1 1

lim VT = lim Ve lim = =-.

ot =4 et (Vo =2)(Vr+2) a2 Vi+2 4
By definition, f is continuous at 4 if

F(4) = lim f(z) = lim

Hence, we should define f(4) = 1/4.




