Stat 257: (Selected) Solutions to Assignment #5

(5.2) We begin with the observation that
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The two expressions on the left side of (%) are easy to deal with. From equation (5.3) on page 136
we have
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and from the definition of p in equation (5.5) on page 137, we see that
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Well, it turns out that the right side of (x) is also easy to deal with. Notice that the inner sum is
over k and that (Y;; —Y) does NOT depend on k. Therefore,
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But, notice that
and similarly
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We now use equation (5.3) on page 136 again to conclude
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Finally, we can combine (1), (2), and (3) to give
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Solving for p now gives



It now follows that
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We now find that
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as M — oo so that we may write
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(5.3) Recall that the variance of the cluster sample total .« is given by
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From the data given, we find that M = 12, and
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If we want to find the standard error of the unbiased cluster sample estimator g, for a cluster
sample of 4 branches, then we take m = 4. Next, we calculate the population mean
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so that
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The standard error of g, is therefore

SE(Te)) = 1/ Var(¥ew)) = 6.93.

On the other hand, the variance of the simple random sampling estimator ¥ is given by
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where the overall sample variance is given by
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Thus, we find for a sample of size n = 27 that
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which gives the standard error of 7 as

SE(y) = +/ Var(y) ~ 0.449.
The relative efficiency is therefore
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This shows that the simple random sampling estimator 3 is vastly more efficient. In fact, the cluster
sampling estimator is less than one-half-of-one percent as efficient as the simple random sampling

estimator.

Since the cluster sizes are not equal (i.e., there is no number L such that N = Ny = --- = Njg = L),
the estimator .,y cannot be used in this situation. As noted in on page 141, the cluster estimator
Ye(c) 18 always a biased estimator. Since we have complete knowledge of the population data (as

given in the problem) and are able to use Y, there is no reason to use ().



