Stat 257: Solutions to Assignment #3

(3.1) Let X denote the assessed yields, and let Y denote the actual yields. Our goal is to estimate
Yr. In addition to the data clearly given in the problem, note that we also know the following:
N = 280, n = 25, and X7 = 439.5.

simple random sample estimator

If we consider the estimator based solely on the values of the actual yields, then we obtain
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ratio estimator
The method of ratio estimation provides us with the estimate
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regression estimator

In order to determine the regression estimate, we begin by computing the estimated slope of the
regression line, namely

n

 wi—oi—7) D yiwi—n

j_Syx _ ol = 70.64—25. 3528 %~0963
sk & s o, T34T-25. (414)2 o
Z(xl — ) le — nT
i=1 =1

This gives the regression estimate as
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We find
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so that yr has estimated standard variance
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Hence, approximate 95% confidence intervals for Y7 are given by

e 445.76 £ 21/680.4896 or 445.8 + 52.2 (simple random sampling estimation),
e 422.51 £+ 24/138.1581 or 422.5 £ 23.5 (ratio estimation),
o 42247 £ 24/138.1559 or 422.5 £ 23.5 (regression estimation).

Note that the estimated standard errors are simply the square roots of the estimated variances,
namely

o s(yr) ~ V/680.4396 ~ 26.09,
e s(yrg) ~ v/138.1581 ~ 11.75,
e s(yrr) ~ V138.1559 ~ 11.75.

The estimated relative efficiencies are the ratios of the estimated variances. That is,

s*(yrr) _ 138.1581
s2(yp) ~ 680.4896

RelEff(yTR, yT) = ~ 20.3%

and
s?(yrr)  138.1559

= ~ 20.3%.
s2(yr)  680.4896 %

RelEff(yrr, yr) =

(3.3) It appears that the most appropriate method for estimating Y is regression estimation. This
is arguably the best choice because we are observing bivariate data (X =height, and Y) and we
have complete knowledge about X. Furthermore, it appears that there is a rough linear relationship
between X and Y which does not pass through the origin. From the data presented, we observe
that N = 560, n = 10, X = 173.2, and we calculate that
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In order to determine the regression estimate, we begin by computing the estimated slope of the
regression line, namely
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This gives the regression estimate as
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~ 3.38.
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so that 7y has estimated standard variance
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~ 0.0143.

This gives an estimated standard error of s(y;) ~ 0.119 so that an approximate 95% confidence

interval for Y is
3.38+2-0.119 or (3.14,3.61).



