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Method of Maximum Likelihood

We now give a second method of finding estimators. While the method of
moments estimators were very easy to find, it will be more complicated to
determine maximum likelihood estimators. The trade off, as we will show, is
that maximum likelihood estimators have some very nice statistical properties
that the method of moments estimators do not possess.

Definition 6.1. If Y3,...,Y, is a random sample from a population whose
density is f(y|@), then the likelihood function is defined as

L) =[] o)

Note that the likelihood function is the joint density function of the ran-
dom sample Y7,...,Y, viewed as a function of the parameter 6 for a fixed
realization y,...,y, of Y1,...,Y,. The reason that we write L(6) is to em-
phasize that the likelihood function is being viewed as a function only of 6.

Example 6.2. If Y7,...,Y, is a random sample from an Exp(6) population
where 6 > 0 is a parameter so that their common density is

F6l0) = ge ™, y>0,

determine the likelihood function L(6).
Solution. We find

n "1 1 1
L(e) = H ylle :HE _yl/g e_yl/a . 7€_y2/9"'76_yn/9
i=1 =1

for 8 > 0 provided that y; > 0,...,y, > 0.
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Example 6.3. If Y1,...,Y,, is a random sample from a N(6,0?) population
where 6 € R is a parameter so that their common density is

_ )2
exp{—(ye)}, —00 <y < oo,

1

0 =
f(y| ) 0\/% 202
determine the likelihood function L(6).
Solution. We find

n

_ =TTt =02

i=1 -1 9

for —oo < 6 < oo provided —oco < Y1 < 00,...,—00 < Y, < 00.

Definition 6.4. The mazimum likelihood estimator of 6 is that value of 6
which maximizes L(6). Call it Oyg. That is,

OMLE = arg max L(9).
6

In order to maximize L(f) it is sometimes easier to work with log L(6)
instead. In fact, the log-likelihood function is important enough to have its
own notation.

Definition 6.5. If Y7,...,Y,, is a random sample from a population whose
density is f(y|€), then the log-likelihood function ¢(0) is defined as

£(0) :=log L(6)

where L(0) is the likelihood function.

Remark. Since the logarithm function is monotonically increasing, it is clear
that the value of § where the maximum of L(6) occurs is necessarily the value
of # where the maximum of £(0) occurs, and that the converse is also true.
That is,
Onre = argmax L(0) iff Onre = arg max log L(0).
9 9

One technique for maximizing the log-likelihood function is to use the
second derivative test from elementary calculus. That is, we find the critical
points by solving ¢/(#) = 0 for 6, and then determine which critical point is
the global maximum by considering ¢”(6).
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Example 6.6. If Y7,...,Y,, is a random sample from an Exp(f) population
where 6 > 0 is a parameter so that their common density is

F610) = ge %, y>0,

determine éMLE7 the maximum likelihood estimator of 6.

Solution. We found in Example 6.2 that

L(0) = ;- exp { Z y}

for 8 > 0 provided that y; > 0,...,y, > 0. In order to maximize the likelihood
function L(0), we will try to maximize the log-likelihood function £(#) instead.
Therefore,

1 n
((0) =log L(#) = —nlog — & Zy
and so
/

Setting ¢'(f) = 0 implies that

HZ%Z%':?

is the only critical point. Since

and

_n 2n n
(@) _f —32 —2_—3'ny:f2_52:_yﬁ<0

we deduce from the second derivative test that the critical point 8 = 7 is, in
fact, where the global maximum occurs. Therefore,

R 1 & _
0 == E Y, =
MLE n <

Example 6.7. If Y7,...,Y,, is a random sample from a N'(6,02) population
where 0 € R is a parameter so that their common density is

_ )2
exp{—(ye)}, —o0o <y < oo,

1l0) = —

1
oV2r

determine éMLE, the maximum likelihood estimator of 6.



30 6 Method of Maximum Likelihood

Solution. We found in Example 6.3 that

Lo = <a 127r>neXp {_ :

K2

n (yZ o 0)2
— 202

for —o0 < 0 < oo provided —oc0 < Y1 < 00,...,—0 < Y, < oo. In order
to maximize the likelihood function L(#), we will try to maximize the log-
likelihood function (@) instead. Therefore,

1

n

n — 0)?
£(0) =log L(#) = —nlogo — 5 log(2m) — Z %

.
=

’ _ _ i . nl _ny
bO =l = o =pd v g =g p="

is the only critical point. Since
") =—-——= <0
o

for all 0, we deduce from the second derivative test that the critical point
0 = 7 is, in fact, where the global maximum occurs. Therefore,

Example 6.8. If Y7,...,Y,, is a random sample from a population having
density
flylo)=(0+1)y", 0<y<1,

where 6 > —1 is a parameter, determine éMLE, the maximum likelihood esti-
mator of 6.

Solution. We begin by noting that the likelihood function is

L(O) = ][ f@il0) = [JO + 1)l = 0+ 1) (_H yi>

1=

for > 0 provided that 0 <y; < 1,...,0 < y, < 1. In order to maximize the
likelihood function L(6), we will try to maximize the log-likelihood function
£(0) instead.
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Therefore,
£(0) =log L() = nlog(0 + 1) + 0 Y logy;
=1

and so

d n n
(0= —0(0) = —— It i
(0) = 254(0) 9+1+;ogy

Setting ¢'(6) = 0 implies that

0= ——"— " -1
Z log i
i=1
is the only critical point. Since
() = —— <0
O =G+ <

for all 8, we deduce from the second derivative test that the critical point

"
> logy;
i=1

is, in fact, where the global maximum occurs. Therefore,

0 -1

n
n
> log;
i=1

It is perhaps worth noting that 0 < H?:l y; < 1 since 0 < y; < 1 for all 4.

This implies that
Zlog y; < 0.
i=1

Onire = — 1.

Hence,
n

Zn: logy;
=1

which in turn implies that OvLe > —1 as required.

>0

We end our study of maximum likelihood estimation with an example that
shows that determining the MLE is not always as simple as setting ¢/(6) = 0
and solving.
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Example 6.9. If Y7,...,Y,, is a random sample from a Uniform(0, ) popu-
lation where 6 > 0 is a parameter so that their common density is

1

then .
L(O) = [[ f(wil6) =67 and £(6) =log L(6) = —nlog¥.
i=1
We see, however, that
n

‘o =—z

and so setting ¢'(6) = 0 gives nonsense. Thus, we must be more careful. In
fact, we need to be more careful with our definition of L(#). That is,

i=1
where
fanlo) =071 0<y <9,
flylo) =071, 0<y2 <0,
Flynl0) =071, 0 <yn <0,
and so

L) =06""
for § > 0 provided that 0 < y; < 0,0 < yp <6,...,0 <y, < 6. Note that

another way to write the constraint is as follows:

0< min{yla s 7yn} < maX{yh s ayn} <.
Therefore, the likelihood function is

L(Q) =0~" for 60> max{y1, ceey yn}

provided min{yi,...,y,} > 0. Recall that Ovwp is that value of 6 where the
maximum of L(#) occurs. Since #~" is monotonically decreasing, its maximum
value necessarily occurs where 6 is smallest; that is at § = max{y1,...,yn}.
Thus, A

GMLE = max{Yl, PN ,Yn}.



