Statistics 252 Winter 2016 Midterm #2 — Solutions

1. (a) The likelihood function is

L(9) = Hf(in) Wn/ﬁ”” (H yl> exp {

for 6 > 0.
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1. (b) If we let u = 2—2, then we can write L(0) = g(u,0) - h(y1,...,yn) where
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—7 1l and g(u,0) = 6272 5o by the factorization theorem we
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conclude that Z V2 is a sufficient statistic for the estimation of 6.
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1. (c) The log-likelihood function is ¢(0) = g log2 — g log 7+ g log 6 — ; logy; — 3 ; 7
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implying ¢'(0) = M. Z —5. Setting ¢'(f) = 0 and solving for # implies 0 = L Since
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") = —% < 0 for all @, the second derivative test implies that Oyg =
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1. (d) Since log f(y|0) = §log2 — §log7r + Elogﬁ —logy — 307 we find %logf(yW) =
1 1 0? 1
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2L and L tog f0l6) = g Y16)] = 55
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1. (e) An approximate 90% confidence interval for 6 based on the MLE and Fisher Infor-
mation 1s
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which in this case equals
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2. (a) If Y has density f(y|f), then the population mean is E(Y) = / 2072 dy = 50.
0

Equating the population mean with the sample mean Y implies that éMOM =_Y.
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2. (b) The likelihood function is

3
L(0) = [ [ f(wil6) = 80 ®y1y2y3 1{0 < min{yy, v, ys}} L{max{yy, 2, ys} < 6}

=1

for 6 > 0. Since L(0) is a strictly decreasing function of € for § > 0, and since the support
of L(0) is [max{yi, y2, Y3}, o0), we conclude that the maximum value of  occurs at the min-
imum of its support, namely at 0 = max{y1,y2,ys}. Thus, Oy g = max{Y;, Ys, Y3}.
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2. (c) Observe that if 0 < y < 6, then P (Y] <y) = / 207%tdt = 07 %% If0 < x <0,
0

then P (éMLE < af) =[P (V1 <2)]® = [022°)> = 6 %25 This implies that the distribution

function of Oy is

0, if x <0,
By (@) =12607%°% if0<z<0,
1, if x>0,

so that the density function of Gy g is Jous (@) = 60 62° if 0 < 2 <4.

2. (d) By definition, a = Py, (reject Hy) = P(Oypg > ¢|0 = 1) = 1 — ¢® using the distribu-
tion function computed in (c). This implies that ¢ = (1 — a)%/5.

2. (e) By definition,

. - _ l—-a 65—1+a«
power = Py, (reject Hy) = P(byg > ¢|0) =1 —-05° =1 — = e

using the distribution function computed in (c) and the fact from (d) that ¢ = (1 — «)'/5.



