
Statistics 252 Winter 2007 Midterm #2 – Solutions

1. If Y ∼ Uniform(θ, 2θ), then fY (y|θ) = θ−1, θ ≤ y ≤ 2θ. Let U = Y/θ so that if 1 ≤ u ≤ 2, then

P (U ≤ u) = P (Y ≤ θu) =
∫ θu

θ

1
θ

dy = u− 1,

and so fU (u) = 1, 1 ≤ u ≤ 2. We must now find a and b such that
∫ a
1 du = α

2 and
∫ 2
b du = α

2 .
Solving gives a = 1 + α

2 and b = 2− α
2 , and so 1− α = P (a ≤ U ≤ b) or, in other words,

1− α = P

(
1 +

α

2
≤ Y

θ
≤ 2− α

2

)
= P

(
2 + α

2
≤ Y

θ
≤ 4− α

2

)
= P

(
2Y

4− α
≤ θ ≤ 2Y

2 + α

)
.

The required confidence interval for θ with coverage probability 1− α is therefore[
2Y

4− α
,

2Y

2 + α

]
.

2. (a) If we write a(θ) = 3θ, b(y) = y2, c(θ) = θ, d(y) = y3, α = 0, and β = ∞, then we see that
fY (y|θ) does, in fact, belong to an exponential family.

2. (b) The likelihood function is given by

L(θ) =
n∏

i=1

fY (yi|θ) = 3nθn

(
n∏

i=1

y2
i

)
exp

{
−θ

n∑
i=1

y3
i

}
.

2. (c) In order to maximize L(θ) we will try to maximize `(θ) instead. Therefore,

`(θ) = n log 3 + n log θ + 2
n∑

i=1

log yi − θ

n∑
i=1

y3
i

and so

`′(θ) =
n

θ
−

n∑
i=1

y3
i .

Setting `′(θ) = 0 implies
θ =

n
n∑

i=1

y3
i

.

Since `′′(θ) = − n
θ2 < 0 we conclude from the second derivative test that

θ̂MLE =
n

n∑
i=1

Y 3
i

.

2. (d) If we let u =
∑n

i=1 y3
i , g(u, θ) = θn exp{−θu}, and h(y1, . . . , yn) = 3n

∏n
i=1 y2

i , then L(θ) =
g(u, θ) · h(y1, . . . , yn) so from the Factorization Theorem we conclude that

U =
n∑

i=1

Y 3
i

is sufficient for the estimation of θ.



2. (e) Let T (U) = n
U . Since T is a one-to-one function, and since any one-to-one function of a

sufficient statistic is also sufficient, we conclude that

T

(
n∑

i=1

Y 3
i

)
=

n
n∑

i=1

Y 3
i

= θ̂MLE

is sufficient for the estimation of θ.

2. (f) Since log fY (y|θ) = log 3 + log θ + 2 log y − θy3 so that

∂

∂θ
log fY (y|θ) =

1
θ
− y3 and

∂2

∂θ2
log fY (y|θ) = − 1

θ2
,

we find

I(θ) = −E

(
∂2

∂θ2
log fY (Y |θ)

)
= −E

(
− 1

θ2

)
=

1
θ2

.

2. (g) Since an approximate 1− α confidence interval for θ is given byθ̂MLE − zα/2
1√

nI(θ̂MLE)
, θ̂MLE + zα/2

1√
nI(θ̂MLE)

 ,

we conclude that  n
n∑

i=1

Y 3
i

− 1.96
√

n
n∑

i=1

Y 3
i

,
n

n∑
i=1

Y 3
i

+ 1.96
√

n
n∑

i=1

Y 3
i


is the required 95% confidence interval.

3. In order to determine the method of moments estimator of θ we equate the first population
moment and the first sample moment, E(Y ) = Y , and solve for θ. Since

E(Y ) =
∫ ∞

−∞
y fY (y|θ) dy =

∫ 1

0
y θyθ−1 dy = θ

∫ 1

0
yθ dy =

θ

θ + 1

we conclude θ
θ+1 = Y and so solving for θ gives θ̂MOM = Y

1−Y
.

4. The significance level of this hypothesis test is

α = PH0(reject H0) = Pµ=0(Y > 7.84/
√

n) = P

(
Y − 0
4/
√

n
>

7.84/
√

n− 0
4/
√

n

)
= P (Z > 1.96) ≈ 0.025

where Z ∼ N (0, 1) and the last step follows from Table 4.

5. (a) The statement of the Cramer-Rao inequality is as follows. Suppose that Y1, . . . , Yn are i.i.d.
with Yi ∼ fY (y|θ). Suppose further that f is a “smooth” function (continuous and differentiable).
Let θ̂ be an unbiased estimator of θ based on Y1, . . . , Yn. Then Var(θ̂) ≥ 1

nI(θ) .

5. (b) Suppose that the variance of an unbiased estimator θ̂ of θ is 1
nI(θ) and that the other

assumptions of the statement in (a) have been met. Since the lower bound of the Cramer-Rao
inequality has been attained, we know that no other unbiased estimator can have smaller variance
than θ̂. Hence, θ̂ must be the MVUE of θ.


