Stat 252 Winter 2007
Likelihood Ratio Test for a Normal Population

Suppose that Yp,...,Y, are independent and identically distributed N(#,1) random variables
where —oo < 6 < o0 is a parameter. Suppose that we are interested in testing the hypothesis
Hy : 0 = 6y against H4 : 0 # 6y using the generalized likelihood ratio test. Since the likelihood
function is
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and the maximum likelihood estimator is éMLE =Y, we conclude that the likelihood ratio is
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Theorem. If Yi,...,Y, are independent and identically distributed N(0,1) random variables
as above, and
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then
—2log A ~ x%(1).
Proof. We begin by noting that
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and so expanding the squares in (%) gives
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We now recall that the distribution of Y is
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and so under the null hypothesis Hy, we conclude

Y~N<00,1>.
n
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so that Z ~ N(0,1) and
—2log A = n(Y — 6p)% = [Vn(Y — 6)]” = Z°.
Recalling that if Z ~ A(0,1), then Z? ~ x2(1), we conclude that
—2log A ~ x*(1)

as required. ]



