
Statistics 252–Mathematical Statistics
Winter 2007 (200710)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) By definition, the likelihood function L(θ) is given by

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

2θ2 y exp{−θ2y2
i } = 2nθ2n

(
n∏

i=1

yi

)
exp

{
−θ2

n∑
i=1

y2
i

}
.

1. (b) In order to maximize L(θ), we attempt to maximize the log-likelihood function

`(θ) = log L(θ) = n log 2 + 2n log θ −
n∑

i=1

log yi − θ2

n∑
i=1

y2
i .

We find that

`′(θ) =
d

dθ
`(θ) =

2n

θ
− 2θ

n∑
i=1

y2
i

and setting `′(θ) = 0 implies that

θ2 =
n

n∑
i=1

y2
i

and so θ =

√√√√√ n
n∑

i=1

y2
i

.

Since

`′′(θ) =
−2n

θ2
− 2

n∑
i=1

y2
i < 0

for all θ, the second derivative test implies

θ̂MLE =

√√√√√ n
n∑

i=1

Y 2
i

.

1. (c) If we let

u =
n∑

i=1

y2
i , h(y1, . . . , yn) = 2n

(
n∏

i=1

yi

)
, and g(u, θ) = θ2n exp

{
−θ2u

}
,

then since L(θ) = h(y1, . . . , yn) · g(u, θ) we conclude from the Factorization Theorem that
U =

∑n
i=1 Y 2

i is sufficient for the estimation of θ. We now recall that any one-to-one function
of a sufficient statistic is also sufficient. Suppose that

T (U) =

√
n

U
.
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Since T is a one-to-one function, we conclude that

T (U) =

√√√√√ n
n∑

i=1

Y 2
i

= θ̂MLE

is also a sufficient statistic for the estimation of θ.

1. (d) We find
log fY (y|θ) = log 2 + 2 log θ + log y − θ2y2

so that
∂

∂θ
log fY (y|θ) =

2

θ
− 2θy2 and

∂2

∂θ2
log fY (y|θ) = − 2

θ2
− 2y2.

The Fisher information is given by

I(θ) = −E
(

∂2

∂θ2
log fY (Y |θ)

)
= −E

(
− 2

θ2
− 2Y 2

)
=

2

θ2
+ 2E(Y 2)

and so we see that we must now compute E(Y 2). Therefore,

E(Y 2) =

∫ ∞

−∞
y2 fY (y|θ) dy =

∫ ∞

0

2θ2 y3 e−θ2y2

dy =
1

θ2

∫ ∞

0

ue−u du =
1

θ2
Γ(2) =

1

θ2

making the substitution u = θ2y2, du = 2θ2y dy. We therefore conclude that

I(θ) =
2

θ2
+ 2E(Y 2) =

2

θ2
+

2

θ2
=

4

θ2
.

1. (e) Recall that a (1 − α) confidence interval based on the Fisher information and the
maximum likelihood estimator is given byθ̂MLE − zα/2 ·

1√
nI(θ̂MLE)

, θ̂MLE + zα/2 ·
1√

nI(θ̂MLE)

 .

Using the results of (b) and (d) we conclude that the required confidence interval is
√√√√√ n

n∑
i=1

Y 2
i

− 2.58

2

√
n∑

i=1

Y 2
i

,

√√√√√ n
n∑

i=1

Y 2
i

+
2.58

2

√
n∑

i=1

Y 2
i

 or


√

n− 1.29√
n∑

i=1

Y 2
i

,

√
n + 1.29√

n∑
i=1

Y 2
i


since z0.005 = 2.58 from Table 2.
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2. (a) Let U = θY 2 so that for u > 0,

P (U ≤ u) = P (Y 2 ≤ u/θ) = P (Y ≤
√

u/θ) =

∫ √
u/θ

0

2θy

(1 + θy2)2
dy.

Therefore, the density of U is given by

fU(u) =
d

du
P (U ≤ u) =

2θ
√

u/θ

(1 + θ(
√

u/θ)2)2
· d

du

√
u/θ =

2
√

θu

(1 + u)2
· 1

2
√

θu
=

1

(1 + u)2
, u > 0.

Thus, we must find a and b so that∫ a

0

1

(1 + u)2
du =

α

2
and

∫ ∞

b

1

(1 + u)2
du =

α

2
.

Computing the integrals we find

1− 1

1 + a
=

α

2
and

1

1 + b
=

α

2
so that a =

α

2− α
and b =

2− α

α
.

Hence,

1− α = P (a ≤ U ≤ b) = P

(
α

2− α
≤ θY 2 ≤ 2− α

α

)
= P

(
α

(2− α) Y 2
≤ θ ≤ 2− α

α Y 2

)
.

In other words, [
α

(2− α) Y 2
,

2− α

α Y 2

]
is a confidence interval for θ with coverage probability 1− α.

2. (b) If α = 0.10 and we observe y = 2, then the observed confidence interval is[
0.10

(2− 0.10) 22
,

2− 0.10

0.10 · 22

]
or

[
1

76
,

19

4

]
or, approximately, [0.013, 4.75].

Since θ0 = 3 lies in this interval, we conclude that there is not sufficient evidence to reject
H0 : θ0 = 3 in favour of HA : θ 6= 3 at the α = 0.10 significance level.

3. (a) We find that f0(y) = 1 for 0 < y < 1 and fA(y) = 1− 1
4
(y−1/2) = 9

8
− y

4
for 0 < y < 1.

Therefore, the likelihood ratio is

Λ(y) =
f0(y)

fA(y)
=

1
9
8
− y

4

=
8

9− 2y

for 0 < y < 1, and so the rejection region is

RR = {Λ(Y ) < c} =

{
8

9− 2Y
< c

}
=

{
Y <

9c− 8

2c

}
= {Y < c′}
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where c′ = 9c−8
2c

is another constant. We now choose c (or, equivalently, c′) so that this test
has the desired significance level. Since

α = PH0(reject H0) = Pθ=0(Y < c′) =

∫ c′

0

f0(y) dy =

∫ c′

0

1 dy = c′

we conclude that c′ = α and so RR = {Y < α}.

3. (b) By definition, power = PHA
(reject H0). From part (a) we know that RR = {Y < α}

and so we compute

power = Pθ=1/2(Y < α) =

∫ α

0

fA(y) dy =

∫ α

0

9

8
− y

4
dy =

9

8
α− 1

8
α2 =

9α(1− α)

8
.

3. (c) If α = 0.10, then RR = {Y < 0.10} is the rejection region of test constructed in
(a). Hence, if a single observation produces y = 0.25, we conclude that since 0.25 is not
smaller than 0.10 there is not sufficient evidence to reject H0 in favour of HA at the α = 0.10
significance level.

4. (a) The generalized likelihood ratio test for the simple null hypothesis H0 : θ = θ0 against
the composite alternative hypothesis HA : θ 6= θ0 has rejection region {Λ < c} where

Λ =
L(θ0)

L(θ̂MLE)

is the generalized likelihood ratio and L(θ) is the likelihood function. In this case,

L(θ) = θn

(
n∏

i=1

yi

)θ−1

and θ0 = 1 so that

Λ =
1n
(∏

yi

)1−1

θ̂n
MLE

(∏
yi

)θ̂MLE−1
= θ̂−n

MLE

(∏
yi

)1−θ̂MLE

=

(∑
log yi

−n

)n (∏
yi

)1+ n∑
log yi

=

(∑
log yi

−n

)n (
e

∑
log yi

)1+ n∑
log yi

= n−n

(
−

n∑
i=1

log yi

)n

exp

{
n∑

i=1

log yi + n

}

4. (b) We know that

−2 log Λ = −2

[
n log

(
−
∑

log Yi

n

)
+
∑

log Yi + n

]
approx∼ χ2(1).
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Since the observed data imply

−2 log Λ = −2

[
8 log

(
4

8

)
− 4 + 8

]
≈ 3.09,

and since χ2
1,0.10 = 2.70554 from Table 6, we conclude that there is sufficient evidence to

reject H0 in favour of HA at the α = 0.10 significance level.

5. Since Y1, Y2, Y3 are independent normal random variables, we know that Y1 +Y2 +Y3 also
has a normal distribution with mean E(Y1) + E(Y2) + E(Y3) = 4 + 4 + 4 = 12 and variance
Var(Y1) + Var(Y2) + Var(Y3) = 2 + 2 + 2 = 6. Therefore,

P (Y1 + Y2 + Y3 > 13) = P

(
Y1 + Y2 + Y3 − 12√

6
>

13− 12√
6

)
≈ P (Z > 0.4082) ≈ 0.3416

where Z ∼ N (0, 1) and the last equality follows from Table 4.

6. Let X := min{Y1, Y2} so that

P (X > x) = P (Y1 > x, Y2 > x) = P (Y1 > x)P (Y2 > x) = [P (Y1 > x)]2

since Y1 and Y2 are independent and identically distributed. Thus, we calculate (for x > 4)
that

P (Y1 > x) =

∫ ∞

x

1

2
exp

{
−1

2
(y − 4)

}
dy =

∫ ∞

x−4

1

2
e−u/2 du = −e−u/2

∣∣∣∣∞
x−4

= exp

{
−1

2
(x− 4)

}
making the substitution u = y − 4, du = dy, and so

P (X ≤ x) = 1− P (X > x) = 1−
[
exp

{
−1

2
(x− 4)

}]2

= 1− e4−x

from which we conclude that

fX(x) =
d

dx
P (X ≤ x) = e4−x, x > 4.

7. To find the method of moments estimators for α and β, we must solve the system of
equations

E(Y ) = Y and E(Y 2) =
1

n

n∑
i=1

Y 2
i .

Since E(Y ) = α+β
2

and Var Y = (β−α)2

12
, we find

E(Y 2) = Var Y + [E(Y )]2 =
(β − α)2

12
+

(α + β)2

4
=

α2 + αβ + β2

3
.

Thus,

α + β = 2Y and α2 + αβ + β2 =
3

n

n∑
i=1

Y 2
i .
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Since α = 2Y − β, write α2 + αβ + β2 = α(α + β) + β2 to see that

α2 +αβ +β2 = 2Y (2Y −β)+β2 = β2−2Y β +4Y
2

= β2−2Y β +Y
2
+3Y

2
= (β−Y )2 +3Y

2
.

Hence, we find

(β − Y )2 + 3Y
2

=
3

n

n∑
i=1

Y 2
i so that β = Y +

√√√√ 3

n

n∑
i=1

Y 2
i − 3Y

2

and

α = 2Y − β = Y −

√√√√ 3

n

n∑
i=1

Y 2
i − 3Y

2
.

In other words,

α̂MOM = Y −
√

3

√√√√ 1

n

n∑
i=1

Y 2
i − Y

2
and β̂MOM = Y +

√
3

√√√√ 1

n

n∑
i=1

Y 2
i − Y

2
.

8. (a) The method of moments estimator of θ is found by equating the first population
moment E(Y ) with the first sample moment Y and solving for θ. We find

E(Y ) = 0 · P (Y = 0) + 1 · P (Y = 1) = 0 + θ1(1− θ)1−1 = θ

and so we conclude that θ̂MOM = Y .

8. (b) Since E(Y1) = · · · = E(Yn) = θ we conclude that

E(θ̂MOM) = E(Y ) =
E(Y1) + · · ·+ E(Yn)

n
=

nθ

n
= θ

which shows that θ̂MOM is, in fact, an unbiased estimator of θ.

8. (c) We begin by calculating

E(Y 2) = 02 · P (Y = 0) + 12 · P (Y = 1) = 0 + θ1(1− θ)1−1 = θ

so that Var(Y ) = E(Y 2)− [E(Y )]2 = θ − θ2 = θ(1− θ). Therefore,

Var(θ̂MOM) = Var(Y ) =
Var(Y1) + · · ·+ Var(Yn)

n2
=

nθ(1− θ)

n2
=

θ(1− θ)

n
.

8. (d) By definition, the likelihood function L(θ) is given by

L(θ) =
n∏

i=1

fY (yi|θ) = θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yi = θny(1− θ)n−ny.
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In order to maximize L(θ), we attempt to maximize the log-likelihood function

`(θ) = log L(θ) = ny log θ − (n− ny) log(1− θ).

We find that

`′(θ) =
d

dθ
`(θ) =

ny

θ
− n− ny

1− θ

and setting `′(θ) = 0 implies that
θ = y.

Since

`′′(θ) =
−2ny

θ2
− 2(n− ny)

(1− θ)2
< 0

for all θ, the second derivative test implies

θ̂MLE = Y .

8. (e) We find
log fY (y|θ) = y log θ + (1− y) log(1− θ)

so that

∂

∂θ
log fY (y|θ) =

y

θ
− 1− y

1− θ
and

∂2

∂θ2
log fY (y|θ) = − y

θ2
− 1− y

(1− θ)2
.

We now find the Fisher information is

I(θ) = −E
(

∂2

∂θ2
log fY (Y |θ)

)
= −E

(
−Y

θ2
− 1− Y

(1− θ)2

)
=

E(Y )

θ2
+

1− E(Y )

(1− θ)2

=
1

θ
+

1− θ

(1− θ)2

=
1

θ
+

1

1− θ

=
1

θ(1− θ)

since E(Y ) = θ as calculated in (a).

8. (f) It is shown in (b) that θ̂MOM = Y is an unbiased estimator of θ. Since

1

nI(θ)
=

1

n · 1
θ(1−θ)

=
θ(1− θ)

n
= Var(Y ) = Var(θ̂MOM)

from (c), we see that θ̂MOM = Y attains the lower bound of the Cramer-Rao inequality.
Therefore, we conclude that θ̂MOM = 2Y is the minimum variance unbiased estimator of θ.
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9. (a) This is incorrect because the researcher is claiming that (1−p-value) is the probability
that the null hypothesis is false. The p-value is not a probability of a null hypothesis being
true or false. It is the probability of observing a value of the sample statistic that is as or
more extreme than what was observed, when the null hypothesis is true.

9. (b) With four units, the null hypothesis is unlikely to be rejected because the variability
in the test statistic will be large. Hence, there is not enough data to support the researcher’s
claim that the alternative hypothesis is clearly not right.

10. The correct answers, in order, are: True, False, True, False, False, False.
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