
Stat 252.01 Winter 2007
Assignment #7 Solutions

Important Remark: The factorizations of L into L = g · h are not unique. Many answers are
possible.

Important Remark: Any one-to-one function of a sufficient statistic for θ is also sufficient for θ.

(9.30) If Y1, . . . , Yn are iid N (µ, σ2) random variables each with density

fY (y|µ, σ2) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
,

then the likelihood function is

L(µ, σ2) = (2π)−n/2(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2
}

.

(a) If µ is unknown, and σ2 is known, then with

u = y, g(u, µ) = exp
{

1
2σ2

(
2µnu− µ2

)}
,

h(y1, . . . , yn) = (2π)−n/2(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

y2
i

}
,

the Factorization Theorem implies Y is sufficient for µ.

(b) If µ is known, and σ2 is unknown, then with

u =
n∑

i=1

(yi − µ)2, g(u, σ2) = (σ2)−n/2 exp
{
− 1

2σ2
u

}
,

h(y1, . . . , yn) = (2π)−n/2,

the Factorization Theorem implies
n∑

i=1

(Yi − µ)2 is sufficient for σ2.

(c) If both µ and σ2 are unknown, then with

u = (u1, u2) =

(
n∑

i=1

yi,

n∑
i=1

y2
i

)
,

g(u, (µ, σ2)) = g((u1, u2), (µ, σ2)) = (σ2)−n/2 exp
{

1
2σ2

(
2µu1 + u2 − µ2

)}
,

h(y1, . . . , yn) = (2π)−n/2,

the Factorization Theorem implies

(
n∑

i=1

Yi,

n∑
i=1

Y 2
i

)
is jointly sufficient for (µ, σ2).



(9.34) If Y1, . . . , Yn are iid geometric random variables each with density

fY (y|p) = p(1− p)y,

for y = 1, 2, 3, . . ., then the likelihood function is

L(p) = p(1− p)
∑n

i=1 yi .

If
u = y, g(u, p) = p(1− p)nu, and h(y1, . . . , yn) = 1,

then since L(p) = g(u, p) · h(y1, . . . , yn), we conclude by the Factorization Theorem that Y is
sufficient for p.

(9.36) If Y1, . . . , Yn are iid each with density

fY (y|α, β) = αβαy−(α+1)

for y ≥ β, then for fixed β the likelihood function is

L(α) = αnβnα

(
n∏

i=1

yi

)−(α+1)

.

If

u =
n∏

i=1

yi, g(u, α) = αnβnαu−(α+1), and h(y1, . . . , yn) = 1,

then since L(α) = g(u, α) · h(y1, . . . , yn), we conclude by the Factorization Theorem that
n∏

i=1

Yi

is sufficient for α.

(9.74) (a) If Y1, . . . , Yn are a random sample from the density function

fY (y|θ) =
1
θ
ryr−1e−yr/θ, y > 0

where θ > 0 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

1
θ
ryr−1

i e−yr
i /θ = θ−n · rn ·

(
n∏

i=1

yi

)r−1

· exp

(
−1

θ

n∑
i=1

yr
i

)
.

If

u =
n∑

i=1

yr
i , g(u, θ) = θ−n · exp

(
−u

θ

)
, h(y1, . . . , yn) = rn ·

(
n∏

i=1

yi

)r−1

,

then the Factorization Theorem implies
n∑

i=1

Y r
i is sufficient for θ.

(c) Since the MLE obtained in (b), namely

θ̂MLE =
1
n

n∑
i=1

Y r
i ,



is a (one-to-one function of the) sufficient statistic from (a), we conclude that if it is unbiased,
or can be adjusted to be unbiased, then the MVUE of θ will be obtained. Since the Yi are iid,
we find

E(θ̂MLE) =
1
n

n∑
i=1

E(Y r
i ) = E(Y r

1 ) =
∫ ∞

0
yr fY (y|θ) dy =

r

θ

∫ ∞

0
y2r−1 e−yr/θ dy.

To compute this integral, we use the substitution x = yr, dx = ryr−1dr so that

E(θ̂MLE) =
r

θ

∫ ∞

0
y2r−1 e−yr/θ dy =

∫ ∞

0

x

θ
e−x/θ dx = θ

since we recognize the last integral as the mean of a Gamma(1, θ) random variable. Therefore,

θ̂MLE =
1
n

n∑
i=1

Y r
i

is the MVUE of θ.

(9.75) (b) Since Y1, . . . , Yn are i.i.d. Uniform(0, 2θ + 1) random variables, then the variance of
the underlying distribution is

(2θ + 1)2

12
.

In part (a) we determined that the maximum likelihood estimator of θ is

θ̂MLE =
max{Y1, . . . , Yn} − 1

2
.

Therefore, the required MLE is

(2θ̂MLE + 1)2

12
=

(2max{Y1,...,Yn}−1
2 + 1)2

12
=

(max{Y1, . . . , Yn})2

12
.

(9.80) If Y1, . . . , Yn are i.i.d. with common density

fY (y|θ) = (θ + 1)yθ, 0 < y < 1

where θ > −1 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

(θ + 1)yθ
i = (θ + 1)n

(
n∏

i=1

yi

)θ

.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = n log(θ + 1) + θ
n∑

i=1

log yi.

Since

`′(θ) =
n

θ + 1
+

n∑
i=1

log yi



we find `′(θ) = 0 when

n

θ + 1
+

n∑
i=1

log yi = 0 or θ = − n
n∑

i=1

log yi

− 1.

Finally
`′′(θ) = − n

(θ + 1)2
< 0

so that by the second derivative test we conclude,

θ̂MLE = − n
n∑

i=1

log Yi

− 1.

Recall that in Exercise (9.61) we found

θ̂MOM =
2Y − 1
1− Y

.

(9.81) If a coin is tossed twice, then there are three possibilities for the number of heads, namely
0,1, or 2. If the probability of flipping heads is p, then

P (Y = 0) = (1− p)2, P (Y = 1) = 2p(1− p), P (Y = 2) = p2.

It is a simple matter of plugging in the two possible values of p, namely 1/4 and 3/4 to determine
that

• p = 1/4 maximizes P (Y = 0),

• both p = 1/4 and p = 3/4 maximize P (Y = 1),

• p = 3/4 maximizes P (Y = 2).

Since the maximum likelihood estimator of p is simply the value that maximizes the likelihood
function, we begin by determining the likelihood function. By definition, the likelihood function
L(p) is the product of the densities of the random variables in the sample. Since there is only
one random variable being observed, we find that L(p) is simply the density of Y , namely

P (Y = 0) = (1− p)2, P (Y = 1) = 2p(1− p), P (Y = 2) = p2.

Thus, the MLE depends on the observed value y so that

• if y = 0, then p̂MLE = 1/4,

• if y = 1, then p̂MLE = 1/4 and p̂MLE = 3/4 (there is no unique maximum),

• if y = 2, then p̂MLE = 3/4.


