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1. Textbook

(9.73) If Y1, . . . , Yn are i.i.d. exponential(θ), then each Yi has common density

fY (y|θ) =
1
θ
e−y/θ, y > 0.

Therefore, the likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

1
θ
e−yi/θ = θ−n exp

{
−1

θ

n∑
i=1

yi

}
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). In order to maximize
L(θ) we will attempt to maximize the log-likelihood function `(θ) given by

`(θ) = −n log θ − 1
θ

n∑
i=1

yi.

Since

`′(θ) = −n

θ
+

1
θ2

n∑
i=1

yi

we find `′(θ) = 0 when

−n

θ
+

1
θ2

n∑
i=1

yi = 0 or θ =
1
n

n∑
i=1

yi.

Finally

`′′(θ) =
n

θ2
− 2

θ3

n∑
i=1

yi

so that

`′′
(

1
n

∑
yi

)
= − n3

(
∑

yi)
2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
n

n∑
i=1

Yi = Y .

Since θ > 0, we see that the function T (θ) = θ2 is one-to-one. Therefore, the maximum likelihood
estimator of θ2 is

θ̂2
MLE = Y

2
.

(9.74) (b) If Y1, . . . , Yn are a random sample from the density function

fY (y|θ) =
1
θ
ryr−1e−yr/θ, y > 0



where θ > 0 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

1
θ
ryr−1

i e−yr
i /θ = θ−n · rn ·

(
n∏

i=1

yi

)r−1

· exp

{
−1

θ

n∑
i=1

yr
i

}
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). In order to maximize
L(θ) we will attempt to maximize the log-likelihood function `(θ) given by

`(θ) = −n log θ + n log r + (r − 1)
n∑

i=1

log yi −
1
θ

n∑
i=1

yr
i .

Since

`′(θ) = −n

θ
+

1
θ2

n∑
i=1

yr
i

we find `′(θ) = 0 when

−n

θ
+

1
θ2

n∑
i=1

yr
i = 0 or θ =

1
n

n∑
i=1

yr
i .

Finally

`′′(θ) =
n

θ2
− 2

θ3

n∑
i=1

yr
i

so that

`′′
(

1
n

∑
yr

i

)
= − n3

(
∑

yr
i )

2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
n

n∑
i=1

Y r
i .

(9.75) (a) Suppose that Y1, . . . , Yn are i.i.d. Uniform(0, 2θ + 1) so that each Yi has density
function

fY (y|θ) =
1

2θ + 1
, 0 ≤ y ≤ 2θ + 1.

The likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) = (2θ + 1)−n

provided that 0 ≤ yi ≤ 2θ + 1 for each i = 1, . . . , n. In other words,

L(θ) =

{
(2θ + 1)−n, 0 ≤ max{y1, . . . , yn} ≤ 2θ + 1,

0, otherwise.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). Since (2θ + 1)−n

is strictly decreasing in θ provided that 0 ≤ max{y1, . . . , yn} ≤ 2θ + 1, we see that the
maximum value is obtained when θ is chosen as small as possible subject to the constraint
max{y1, . . . , yn} ≤ 2θ + 1. Thus, the maximum likelihood estimator is

θ̂MLE =
max{Y1, . . . , Yn} − 1

2
.



(9.76) (a) Suppose that Y1, Y2, Y3 are i.i.d. Gamma(2, θ) random variables so that each has
density

fY (y|θ) =
1
θ2

ye−y/θ, y > 0

Therefore, the likelihood function is

L(θ) =
3∏

i=1

fY (yi|θ) =
3∏

i=1

1
θ2

yie
−yi/θ = θ−6 ·

3∏
i=1

yi · exp

{
−1

θ

3∑
i=1

yi

}
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). In order to maximize
L(θ) we will attempt to maximize the log-likelihood function `(θ) given by

`(θ) = −6 log θ +
3∑

i=1

log yi −
1
θ

3∑
i=1

yi.

Since

`′(θ) = −6
θ

+
1
θ2

3∑
i=1

yi

we find `′(θ) = 0 when

−6
θ

+
1
θ2

3∑
i=1

yi = 0 or θ =
1
6

3∑
i=1

yi =
y

2
.

Finally

`′′(θ) =
6
θ2

− 2
θ3

3∑
i=1

yi

so that

`′′
(

1
6

∑
yi

)
= − 63

(
∑

yi)
2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
6

3∑
i=1

Yi =
Y

2
.

Based on the observed data, we find that the maximum likelihood estimate of θ is

θ̂MLE =
120 + 130 + 128

6
= 63.

(b) Since each Y1, Y2, Y3 are i.i.d. Gamma(2, θ), and since

θ̂MLE =
1
6

3∑
i=1

Yi =
Y

2

we conclude

E(θ̂MLE) =
1
6

3∑
i=1

E(Yi) =
3 · 2θ

6
= θ



and

Var(θ̂MLE) =
1
62

3∑
i=1

Var(Yi) =
3 · 2θ2

62
=

θ2

6
.

(c) If θ = 130, then an approximate bound for the error of estimation is given by

2
√

Var(θ̂MLE) = 2

√
θ2

6
= 2

√
1302

6
≈ 106.14.

(d) Since the variance of Y is Var(Y ) = 2θ2, we conclude that the MLE of Var(Y ) is

ˆVar(Y )MLE = 2θ̂2
MLE = 2(63)2 = 7938.

(9.77) (a) Suppose that Y1, . . . , Yn are a random sample from the density function

fY (y|θ) =
1

Γ(α)θα
yα−1e−y/θ, y > 0

where α > 0 is known. Therefore, the likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =
n∏

i=1

1
Γ(α)θα

yα−1
i e−yi/θ = θ−nα · Γ(α)−n ·

(
n∏

i=1

yi

)α−1

· exp

{
−1

θ

n∑
i=1

yi

}
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). In order to maximize
L(θ) we will attempt to maximize the log-likelihood function `(θ) given by

`(θ) = −nα log θ − n log Γ(α) + (α − 1)
n∑

i=1

log yi −
1
θ

n∑
i=1

yi.

Since

`′(θ) = −nα

θ
+

1
θ2

n∑
i=1

yi

we find `′(θ) = 0 when

−nα

θ
+

1
θ2

n∑
i=1

yi = 0 or θ =
1

nα

n∑
i=1

yi =
y

α
.

Finally

`′′(θ) =
nα

θ2
− 2

θ3

n∑
i=1

yi

so that

`′′
(

1
nα

∑
yi

)
= − n3α3

(
∑

yi)
2 < 0

since α > 0. By the second derivative test we conclude,

θ̂MLE =
1

nα

n∑
i=1

Yi =
Y

α
.



3. (a) It is highly unlikely that the i.i.d. assumption is reasonable. In order to postulate i.i.d.
Bin(k, p), she is assuming that each animal has the same probability of being trapped. This is
doubtful both within a species and between species. (Are some animals “dumber” and others
“smarter”? What about different species? Are some more cautious than others?) This is also
doubtful because animals are likely to get “smarter” after being trapped once. (Think of any
Pavlovian experiment.) The independent trials assumption is also dubious. Is it reasonable to
assume that animals do not warn others of the danger of the trap? Probably not.

(b) For a Bin(k, p) random variable Y , we have E(Y ) = kp and E(Y 2) = Var(Y ) + [E(Y )]2 =
kp(1−p)+k2p2. The method of moments system implies that µ̂1 = kp and µ̂2 = kp(1−p)+k2p2.
Solving gives

p̂MOM = 1− µ̂2 − (µ̂1)2

µ̂1

and
k̂MOM =

µ̂1

p̂MOM
.

The data yield µ̂1 = 12.6 and µ̂2 = 163. Thus,

p̂MOM =
209
315

≈ 0.663 and k̂MOM =
3969
209

≈ 19.

(c) In this case the data yield µ̂1 = 11.2 and µ̂2 = 139.2 which give

p̂MOM =
−8
35

≈ −0.229 and k̂MOM = −49.

These are nonsensical estimates since we require p ∈ [0, 1] and k > 0. Clearly if these were
the data observed, the postulate of a binomial distribution would definitely be cast into serious
doubt!


